

STUDY MATERIALS FOR FUTURE
TEACHERS

Project Object Oriented Programming for Fun

Project acronym OOP4FUN

Agreement number 2021-1-SK01-KA220-SCH-00027903

Project coordinator Žilinska univerzita v Žiline (Slovakia)

Project partners Sveučilište u Zagrebu (Croatia)

 Srednja škola Ivanec (Croatia)

 Univerzita Pardubice (Czech Republic)

 Gymnázium, Pardubice, Dašická 1083 (Czech Republic)

 Obchodna akademia Povazska Bystrica (Slovakia)

 Hochschule für Technik und Wirtschaft Dresden (Germany)

 Gymnasium Dresden-Plauen (Germany)

 Univerzitet u Beogradu (Serbia)

 Gimnazija Ivanjica (Serbia)

Year of publication 2024

Disclaimer:
Funded by the European Union. Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Table of contents

1. Information sheet ... 7

2. Introduction to Greenfoot environment .. 10

2.0. Exploring Game Development with Creativity ... 10

2.0.1. A teacher's Guide to Lesson Preparation ... 12

3. Class definition ... 15

Two teaching scenarios have been created within theClass definition thematic unit. 15

3.1. Exploring Classes and Objects through Game Development with Greenfoot 15

3.0.1. A teacher's Guide to Lesson Preparation ... 16

3.2. Creating Classes and Objects through Game Development with Greenfoot .. 20

3.2.1.A teacher's Guide to Lesson Preparation .. 21

4. Algorithm .. 25

Two teaching scenarios have been created within the Algorithm thematic unit. 25

4.0. Introduction to Algorithms in the Greenfoot Environment ... 25

4.1.1. A teacher's Guide to Lesson Preparation ... 26

4.1. Greenfoot Adventures: Unraveling Java Method Invocation, Documentation, and Application

Control .. 29

4.1.1. A teacher's Guide to Lesson Preparation ... 30

5. Branching .. 35

Two teaching scenarios have been created within the Branching thematic unit. 35

5.0. Exploring Branching through Game Development with Greenfoot – Incomplete code branching . 35

5.0.1. A teacher's Guide to Lesson Preparation ... 36

5.1. Exploring Branching through Game Development with Greenfoot: Complete code branching 39

5.1.1. A teacher's Guide to Lesson Preparation ... 40

6. Variable and expressions .. 46

Five teaching scenarios have been created within the Variable and expressions thematic unit. 46

6.0. Introduction to Variables and Data Types in theGreenfoot Environment 46

6.0.1. A teacher's Guide to Lesson Preparation ... 47

6.1. Introduction to Operators and Expressions in the Greenfoot Environment.................................... 49

6.1.1. A teacher's Guide to Lesson Preparation ... 50

6.2. Introduction to Constructors in the Greenfoot Environment .. 54

6.2.1. A teacher's Guide to Lesson Preparation ... 55

6.3. Introduction to Attributes in the Greenfoot Environment .. 58

6.3.1. A teacher's Guide to Lesson Preparation ... 59

6.4. Introduction to Constructor Overloading in the Greenfoot Environment 62

6.4.1. A teacher's Guide to Lesson Preparation ... 63

7. Association ... 66

Four teaching scenarios have been created within the Variable and expressions thematic unit. 66

7.0. Greenfoot Objects on a Mission: Exploring Methods and Associations .. 66

7.0.1. A Teacher's Guide to Lesson Preparation... 68

7.1. Greenfoot Objects on a Mission: Exploring Associations and Advanced Method Calls 74

7.1.1. A Teacher's Guide to Lesson Preparation... 76

7.2. Greenfoot Objects on a Mission: Towers, Bullets, and Strategic Interactions 81

7.2.1. A Teacher's Guide to Lesson Preparation... 83

7.4: Greenfoot Objects on a Mission: Bullets, Enemies, and Game Dynamics .. 92

7.2.2. A Teacher's Guide to Lesson Preparation... 94

8. Inheritance ... 101

8.0. Introduction to Inheritance in the Greenfoot Environment .. 101

8.0.1. A teacher's Guide to Lesson Preparation ... 102

8.1. Inheritance Concepts in theGreenfoot Environment (Part 1) .. 106

8.1.1. A teacher's Guide to Lesson Preparation ... 107

8.2. Inheritance Concepts intheGreenfootEnvironment(Part 2)... 113

8.2.1. A teacher's Guide to Lesson Preparation ... 114

8.3. Inheritance Concepts in theGreenfoot Environment (Part 3) .. 117

8.3.1. A teacher's Guide to Lesson Preparation ... 118

9. Encapsulation ... 122

9.1. Exploring Encapsulation through Game Development with Greenfoot ... 122

9.1.1. A teacher's Guide to Lesson Preparation ... 123

9.2. Exploring Encapsulation through Game Development with Greenfoot ... 128

9.2.1. A teacher's Guide to Lesson Preparation ... 129

List of tables

Figure 1. Task 1.1 .. 14

Figure 2. Task 1.2 .. 18

Figure 3. Task 1.3 .. 19

Figure 4. Task 1.4 .. 22

Figure 5. Task 2.3 .. 32

Figure 6. Task 2.4 .. 33

Figure 7. Task 2.5 .. 33

Figure 8. Task 3.2 .. 38

Figure 9. Task 3.3.1 ... 41

Figure 10. Task 3.3.2 ... 41

Figure 11. Task 3.4 .. 42

Figure 12. Task 3.5: Configurations of custom setups of instances to predict movement of instance of class

Enemy ... 43

Figure 13. Task 3.6: Configurations of tricky setups of instances to predict movement of instance of class

Enemy ... 43

Figure 14. Task 3.7 .. 44

Figure 15. Task - Turn in direction - 1 ... 52

Figure 16. Task - Turn in direction - 2 ... 53

Figure 17. Rename class MyWord to Arena ... 56

Figure 18. Create layout of Arena .. 57

Figure 19. Enemy.moveDelay ... 60

Figure 20- Movement of enemies respecting delay - 1 .. 61

Figure 21 Movement of enemies respecting delay - 2 ... 61

Figure 22. Parametric constructor of class Direction - 1 .. 63

Figure 23. Parametric constructor of class Direction - 2 .. 64

Figure 24. Task Overload constructors in class Direction - 1.. 65

Figure 25. Task Overload constructors in class Direction - 2.. 65

Figure 26. Task 5.3 - 1 ... 70

Figure 27. Task 5.3 - 2 ... 70

Figure 28. Task 5.3 - 3 ... 70

Figure 29. Task 5.4 .. 71

Figure 30. Task 5.5 .. 72

Figure 31. Task 5.6 .. 73

Figure 32. Task 5.7 .. 77

Figure 33. Task 5.8 .. 80

Figure 34. Task 5.9 - 1 ... 84

Figure 35. Task 5.9 - 2 ... 84

Figure 36. Task 5.11 - 1 ... 86

Figure 37. Task 5.11 - 2 ... 86

Figure 38. Task 5.14 - 1 ... 89

Figure 39. Task 5.14 - 2 ... 89

Figure 40. Task 5.14 - 3 ... 90

Figure 41. Task 5.15 - 1 ... 91

Figure 42. Task 5.15 - 2 .. 91

Figure 43. Task 5.17 - 1 ... 95

Figure 44. Task 5.17 - 2 ... 96

Figure 45. Task 5.17 - 3 ... 96

Figure 46. Task 5.17 - 4 ... 96

Figure 47. Task 5.17 - 5 ... 97

Figure 48. Task 5.17 - 6 ... 97

Figure 49. Task 5.18 - 1 ... 99

Figure 50. Task 5.18 - 2 ... 99

Figure 51. Task 5.18 - 3 ... 99

Figure 52. Task 5.18 - 4 ... 100

Figure 53. Task 6.1 and 6.2 - 1 .. 104

Figure 54. Task 6.1 and 6.2 - 2 .. 104

Figure 55. Task 6.1 and 6.2 - 3 .. 104

Figure 56. Task 6.3 .. 105

Figure 57. Task 6.5 - 1 ... 108

Figure 58. Task 6.5 - 2 ... 108

Figure 59. Task 6.5 - 3 ... 108

Figure 60. Task 6.7 - 1 ... 110

Figure 61. Task 6.7 - 2 ... 110

Figure 62. Task 6.7 - 3 ... 111

Figure 63. Task 6.7 - 4 ... 111

Figure 64. Task 6.7 - 5 ... 112

Figure 65. Task 6.7 - 6 ... 112

Figure 66. Task 6.8 - 1 ... 115

Figure 67. Task 6.8 - 1 ... 115

Figure 68. Task 6.9 .. 116

Figure 69. Task 6.11 and 6.12 - 1 .. 119

Figure 70. Task 6.11 and 6.12 - 2 .. 119

Figure 71. Task 6.11 and 6.12 - 3 .. 120

Figure 72. Task 6.11 and 6.12 - 4 .. 121

Figure 73. Task 7.1 .. 124

Figure 74. Task 7.2 and 7.3 ... 125

Figure 75. Task 7.2 and 7.3 ... 125

Figure 76. Task 7.4 - 1 ... 127

Figure 77. task 7.4 - 2 ... 127

Figure 78, Task 7.6 .. 130

Figure 79. Task 7.7 .. 131

Figure 80. Task 7.8 - 1 ... 132

Figure 81. Task 7.8 - 2 ... 132

1. Information sheet

The aim of this book is to present a course with materials that will help teachers in preparing materials to

teach students to solve programming tasks using basics of object-oriented programming (OOP) following

light OOP paradigm.

Students will learn to split given tasks among cooperating objects; to determine their competencies; and to

implement designed model. The course does not require previous programming skills. It is taught in Java

programming language. We use Greenfoot environment that utilizes Java programming language. Java is

currently very popular and in praxis widely used programming language. Moreover, the Greenfoot presents

the frame-based source code editor using Stride language. This opens possibilities for teachers who will

want to use in this syllabus presented techniques with students of younger age. Greenfoot is very visual and

from the beginning it makes it possible to create a visualized object, that is “alive” and can be interacted

with. Therefore, the theoretical introduction is minimized, and students will start working from the very

beginning.

The course explains light OOP concepts (such as encapsulation, inheritance, or association) on the creation

of computer games, where these concepts are simply and intuitively utilized. The process of creating a

computer game is based on teamwork and practically utilizes knowledge and skills from other areas of

informatics and to it related subjects (work with multimedia and office software). The design of every

computer game is open enough for students to expand the game individually and creatively. Moreover, the

design leads to the proper utilization of acquired knowledge.

The book is focused to introduce innovative approach to teach programming, based on the solving of tasks

using the object-oriented programming (OOP) paradigm. OOP is nowadays the dominant paradigm for

application development. Therefore, it is proper for students to possess the knowledge and skills in this

area. The subject presents development environment that utilizes different forms of source code editing

(frame-based editing using simplified form as well as real source code writing) what makes it possible to

teach students on different levels of prior technical knowledge and activity. With its simplicity and clarity

this tool supports quick and intuitive comprehension of taught topics what has positive influence on

students and their motivation.

Via programming of interactive games in graphical environment, the student will gain knowledge and skills,

so that student will be able to:

• identify a problem,

• identify suitable objects to solve identified problem (object decomposition),

• design classes of objects, as well as their attributes and methods,

• identify and properly utilize objects relationships (association, inheritance),

• design an algorithm to solve problem and distribute it among cooperative objects,

• use source code elements (branching, loops) to implement designed algorithm,

• effectively use means for source code debugging,

• create simple application with graphical interface in the Greenfoot environment.

Learning outcomes of the subject are summarized as follows:

• understanding the basic principles of object-oriented programming,

• understanding the basics of algorithmization,

• understanding the syntax of the Java programming language,

• analyzing program execution based on the source code,

• the ability to create your own programs with the use of OOP.

A modern approach in designing lectures, especially those for elementary and highschool education is to

define and to share teaching scenarios. Teaching scenarios (TS) “are perceived as a contemporary

pedagogical approach which empowers individualisation of the teaching process by taking into

consideration different student’s needs. TS based teaching is focused on relevant knowledge and skills for

the students, including those of need for the digital society. Careful planning of TS can remedy possible

pitfalls and shortcomings which might influence the teaching process.”

In the context of education and instructional design, TSs represent detailed descriptions or narratives that

outline a specific instructional situation or context. These scenarios are often used in teacher training to

simulate real-world teaching situations and thus we find it as the best tool to represent our innovative

teaching and learning ideas. As teaching scenarios typically include information about the learning

objectives, the content to be taught, the characteristics of the learners, the instructional methods

employed, and the assessment strategies used, it can be aligned with the elements needed for our learning

design artifacts as well.

In order to have a structured approach in defining several teaching scenarios we have defined the following

template that would be filled with concrete data related to a specific learning scenario. Template contains a

short description on how to define each element of the TS.

Title Give learning scenarios a descriptive and an attention-grabbing title.

Learning objectives Clearly state the intended learning outcomes. What should students know,

understand, or be able to do by the end of the scenario?

Target audience Specify the intended audience, grade level and pre-existing knowledge for

which the learning scenario is designed.

Scenario duration Estimate the time required to complete the learning scenario, including any

specific timeframes for different activities. E.g. teacher introduction (5 min),

research done by students individually (10 min), programming solution in

team (20 min), presenting/discussion (10 min).

Materials&resources List the materials, resources, and tools needed for both teachers and students.

This could include textbooks, online and multimedia resources, software, etc.

Description
● Introduce the learning scenario, explain its purpose and relevance.

● Outline the core activities that students will engage in to achieve the

learning objectives. Include details such as discussions, hands-on

activities, group work, competition, etc.

● Specify how students will be organized, i.e. are they going to work

individually or in a team. How large are teams gonna be?

● Explain what projects/problems/tasks will students be working on.

Recommendation is to use problem-based or project-based

approaches. Also, these should reflect real-life situations.

● Explain how projects/problems/tasks will be assigned to students

(teams).

● If working in teams, provide details on how they are going to

collaborate.

● Provide more details related to activities that students need to

participate in.

● If e.g. flipped classrooms are used specify what part of the given topic

students need to research by themselves.

Assessment Provide details related to how students’ effort and knowledge will be

assessed.

● Who is going to assess the students: (1) teachers, (2) students their

own work (self-assessment), (3) students each other’s work (peer-

assessment)

● What evaluation criteria will be used?

● How often will assessment be performed?

● etc.

Result dissemination Explain how students are going to disseminate their results to teachers and

fellow students. E.g. students (all or subset) can present their results/solutions

in front of the teacher and their peers, and then the comparison and

discussion may follow.

 According to this our teaching scenario can be found on the following web address: Course details

(learning-design.eu). Material that support this book can be found on the Moodle platform:

https://oop4fun.fon.bg.ac.rs/

https://learning-design.eu/en/planning/1790/details
https://learning-design.eu/en/planning/1790/details
https://oop4fun.fon.bg.ac.rs/

2. Introduction to Greenfoot environment

Greenfoot is a visual 2D educational software tool with a code editor to create games and

simulations in Java programming language. Greenfoot is visual and interactive. The programmers

are programmedin standard textual Java code, providing a combination of programming

experience in a traditional text-based language with visual execution.

2.0. Exploring Game Development with Creativity

Title Exploring Game Development with Creativity

Learning
objectives

By the end of this session, students will not only have successfully installed
Greenfoot and witnessed its capabilities through example projects but will also
have engaged in collaborative, hands-on play within the development
environment. This playful introduction sets the tone for an exciting exploration of
game development, encouraging creativity, teamwork, and an enthusiastic
approach to coding with Greenfoot.

Target
audience

Secondary school students attending the OOP4Fun course.

Basic programming knowledge including variables, functions, iteration and
selection concepts.

Scenario
duration

1) Introduction (5 min)
2) Rush-hour challenge (10 min)
3) Playing games with teacher (30 min)
4) Team Formation and Project Assignment (5 min)
5) Team Collaboration and Coding (30 min)
6) Peer Review and Feedback (10 min)
7) Homework (30 min)
8) Competition grading (30 min)

Materials &
resources

Greenfoot webpage and download instructions.
Examples prepared by the teacher.
Internet resources for identification of other examples.

Description In this 90-minute learning scenario, secondary school students will dive into the
Greenfoot world by means of gamification, fun, research and teamwork.

After the teacher introduces today's session, reflects on the previoussession and
sets challenging goals, the rush-hour challenge begins. Students are given the
gamified assignment to find instructions, download and install Greenfoot (yet
unknown development tool for them) on their computers. The first three students
are given tokens of appreciation (badges, points, scores, sweets etc.).

The second surprise for them is that in the next 30 minutes they will be playing
games with the teacher. This is a teacher guided session on opening, compiling

and running one-two simple example projects (on the introductory to medium
level of complexity). This will show students the basic elements of the Greenfoot
development environment and basic procedures for handling the project files and
assets.

Afterwards, the students will be grouped in teams (3-4 students each) and will be
given a simple assignment. Teams should change “something” in the given
example project to make the game surprising or fun. Team collaboration and
coding (30 minutes) will have teams work collaboratively on trying to change
something in the given examples. If they break the code beyond the line of being
able to fix it on their own, they can ask for help from the teacher or can download
the “start version” again. This will be a good example why we should use version
control systems when coding.

One or two teams will present their work for peer review and feedback and
discuss the results with the teacher.

At home for homework, each student should search for examples of Greenfoot
games and should introduce his class to his favorite example by uploading a link,
description of what makes it his favorite example and two-three screenshots of
the development environment and running game. As part of the gamification and
motivation via competition, each student should vote for the three best games (it
is not allowed to vote for his own game). The winners are announced and
awarded with tokens of appreciation (badges, points, scores, sweets etc.).

Assessment This activity will enable teachers to give formative assessment feedback based
upon the discussions and monitoring of students’ flipped classroom and
teamwork.

Gamification represents non formal assessment but will increase the interest,
intrinsic motivation and learning outputs of the whole group.

The peer-review assessment will be performed online as a part of a homework
assignment. This will remind students of important aspects of the session, will
make them install Greenfoot, give different examples and remind them of what
was done during the class, which will increase the overall achievement of learning
outcomes.

Result
dissemination

To disseminate their results to teachers and fellow students the usual setup of the
Learning management system (e.g. Moodle will be used). The students can
continue the discussion on the topic on the forum provided to them via the
Learning management tool.

2.0.1. A teacher's Guide to Lesson Preparation

1.Introduction

Objective: Introduce students with programming languages (visual and textual), integrated
development environments and source code.

Concepts to Discuss: programming languages, integrated development environments and
source code

Activity: The teacher makes a short introduction for today's lesson. The teacher introduces
concepts such as:

• programming language
• integrated development environments (programming tools) and
• source code.

The teacher presents examples of source code in different programming languages such as
Java, C, and Python, but also demonstrates programs in Scratch or another visual language.

The teacher does not go "in depth" but tries to explain these concepts using a simple
example, for example, trying to compare learning a programming language with learning a
native or foreign language.

• Natural languages have their own grammar and spelling; the same is the case with
programming languages. In writing, we follow some grammar and spelling rules,
similarly when we write a program in a programming language.

• When we write a story in our native language, we use a notebook, a pen as a tool
that helps us do it, similarly when we write a program in a programming language,
our "tool" for that is integrated development environment

• The result of writing can be a story written on paper, while the result of coding is a
program that we create, which we refer to as source code

The teacher is free to make an introduction with his own example.

2. Rush-hour challenge

Objective: InvestigateGreenfoot and installation instructions.

Concepts to Discuss: Greenfoot, installation instructions

Activity: The teacher assigns the task to the students to find out what Greenfoot is.The
teacher requires from the students to find the installation instructions for
Greenfoot.Students work on the task, after that the teacher presents the students how to
find, download, and run the installation instructions for Greenfoot.Instructionson how to
download and install Greenfoot the teacher can find on Moodle platform.

3. Playing games with teacher

Objective: Start different Greenfood projects.

Concepts to Discuss: Greenfood project (web based and standalone projects)

Activity: The teacher gives the students a task to look at and find examples of projects
made in Greenfoot on the Internet. Students are looking for projects while teachers follow
their work.

The teacher presents the students how they can find examples of finished projects made in
the Greenfoot environment. For example, in the Google search engine, projects can be
found based on the keywords 'Greenfoot Java project example' or similar.

The teacher explains students that there are two types of Greenfootprojects:

• one that can be run in a web browser, and
• another that can bedownloaded and then opened and run from the Greenfoot

environment.

The teacher presentsprojects:

• Projects that can be run directly in a web browser
• Projects that can be run in Greenfoot after downloading.

The teacher can download some example projects or access some projects byaccessing the
links.

4. Team Formation and Project Assignment

Objective: Include the student in project base learning with simple assignmenttask.

Concepts to Discuss: -

Activity: The teacher creates teams, prepares a task and sets a project for the students to
work on. Some of the examples of the task can be found on the Moodle. The teacher
chooses one representative project (not very complex) and for that project defines a task
(problem) that the students should solve.

5. Team Collaboration and Coding

Objective: Introduce the student to create Greenfoot project. Students are working on the
assignment task.

Concepts to Discuss: create Greenfoot project

Activity: The teacher starts Greenfoot and presents the students how to create a project.
The teacher assigns the task to the students to create a Greenfoot project.

Task 1.1: Create a new project and give it a proper name (e.g. TowerDefense) and save it to
a proper location.

The teacher emphasizes to the students that project (identical to the project that was just
made) can be:

download from git1 by typing the git checkout command
Commit: 9046f5353d857dcc112abd92d7b7170abcc64a80)

• download from git, but ZIP file from the following address

https://oop4fun.fon.bg.ac.rs/

The teacher emphasizes to the students that in today's class, they will not work on the
project they have just created, but will do so from the next class, and that they will now
work on existing projects.

1Students must have Git installed on their computer.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/9046f5353d857dcc112abd92d7b7170abcc64a80
https://oop4fun.fon.bg.ac.rs/

The students take on the task and solve the problem.

Solution:

When the solution is created three new classes are made – World, descendant class
MyWorld and Actor. World and Actor classes cannot be changed. The class MyWorld has a
public constructor which makes a new world size 600x400px by default, with a cell size of
1x1 pixels.

Figure 1. Task 1.1

6. Peer Review and Feedback

Objective: Discussion on the students proposed solution.

Concepts to Discuss: -

Activity: The teacher monitors the students' work, and if necessary, gives them guidelines
(instructions). After the end, the teacher chooses one team to show their solution. The
teacher discusses the proposed solution with the students.

7. Homework

Objective: Give tasks to the students to explore the Greenfoot projects.

Concepts to Discuss: -

Activity: The teacher defines the task that the students should solve on one of the existing
projects.

8. Competition grading

Objective: Include the students in evaluation process of the students' projects.

Concepts to Discuss: -

Activity: Students present their project. The teacher requires everyone to participate in
the evaluation of the presented projects by sendinglinks to the students to fill Google form.
The students score on thethree best teams.

After presentations, the teacher gives a summary of the student projects. The teacher
shares his impressions regarding the students' work, indicating whether he is satisfied with
it, whether they met his expectations, or if they exceeded them.

3. Class definition

Two teaching scenarios have been created within theClass definition thematic unit.

3.1. Exploring Classes and Objects through Game Development with Greenfoot

Title Exploring Classes and Objects through Game Development with Greenfoot

Learning
objectives

By the end of this session, students will be able to understand basic concept of
the object and class. Understanding of the examined concepts will be discussed
in the context of the game development, encouraging creativity, teamwork, and
an enthusiastic approach to coding with theGreenfoot tool.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including object and class.

Scenario
duration

1) Object (10 min)
2) Identification of objects and their properties (15 min)
3) Class, instance, inheritance (15 min)
4) Orientation in Greenfoot: World, Actor, MyWorld (10 min)
5) Class constructor(10 min)
6) Task 1.2(15 min)
7) Image settings (10 min)
8) Task 1.3(15 min)

Materials &
resources

Greenfoot webpage and download instructions.
Examples prepared by the teacher.
Internet resources for identification of other examples.

Description In this 90-minute learning scenario, secondary school students are introduced to
programming principles related to object and class through the lens of game
development using the Greenfoot tool.

The session starts with a 10-minuteintroduction by the teacher, which
introduces students to the world of object-oriented programming by explaining
the concept of an object and their properties in real life.

After that, the teacher gives a rush-hour challenge (10 minutes) to the students
who must identify the objects and their properties based on the task's textual
description. After that, the teacher together with the students comes up with a
solution for the task (5 minutes).

In thecontinuation of the lesson, the teacher explains the difference between the
class and the object. At the highest level of abstraction, it explains the concept of
inheritance (15 minutes).
The tutorial starts the Greenfoot environment and explains the Word, Actor, and

MyWord classes (10 minutes).The teacher explains and presents the source code
that was generated and stands behind the classes World, Actor, MyWorld after
creating the projects (10 minutes).
The teacher starts task 1.2 and shows the students how to create a World for the
application they need to build (10minutes).The teacher explains how to set up a
picture for a particular class and works together with the students on task 1.3 (20
minutes).

Assessment Gamification represents non-formal assessment but will increase the interest,
intrinsic motivation and learning outputs of the whole group.

Result
dissemination

To disseminate their results to teachers and fellow students the usual setup of
Github/Gitlab and Learning management system (e.g. Moodle will be used). The
students can continue the discussion on the topic on the forum provided to them
via the Learning management tool.

3.0.1. A teacher's Guide to Lesson Preparation

1. Object

Objective: Introduce the students with the object concept by real-life examples.

Concepts to Discuss: object and object characteristics.

Activity: The teacher introduces the term object. The teacher should make this concept
more relatable to students by using real-life examples. For instance, the teacher could ask
students about their name, height, birthdate, eye color…The teacher asks these questions
to prompt students to consider how they differ from each another, preparing them for a
later question: How students differ from each other?

The teacher concludes that each of us (teacher, students, pupils) has characteristics by
which we differ from each other and emphasizes that each of us is actually "one" object.
The teacher explains the concept of a trait as a characteristic that each of us possesses,
along with a specific value for each trait unique to each individual. Hence, objects vary from
each other based on the values they possess for their respective characteristics.

2. Identification of objects and their properties

Objective: Involve students to identify objects and their properties.

Concepts to Discuss: objects and their properties

Activity: The teacher gives the task to the students to identify objects and their properties
based on the text.

3. Class, instance, inheritance

Objective: Acquire knowledge about class and instance. Make the difference between class
and instance.

Concepts to Discuss: class, instance

Activity: In order to explain the concept of class, class instances (objects) and inheritance
the teacher gives real life examples.

The teacher asks the students questions to make them to see the difference between the
class and the object. Teacher guided discussion on recognized objects and their
classification in classes.

4. Creating an instance of the world in Greenfoot

Objective: Introduce the world in Greenfoot.

Concepts to Discuss: instance of the world in Greenfoot

Activity: The teacher starts the Greenfoot environment and creates a simple project. The
teacher uses this project to explain how students create introduced concept into
Greenfoot.

The teacher noticed that every project created in the Greenfoot environment contains 3
classes, Word, Actor, and MyWord.

The teacher presents the MyWorld class and its role.

The teacher emphasizes that the background of each application created in Greenfoot
consists of cells that represent a single matrix. The teacher shows how to define the
background size (matrix dimension) and the size of each matrix cell.

The teacher explains that the objects that appear on the table ("scene") are on one of
these cells. The teacher shows the source code behind each of these classes.

5. Prepare world

Objective: Involve students to work on project task.

Concepts to Discuss:world in Greenfoot

Activity: The teacher gives the task to the students.Task 1.2:Create a world of size 10x10
cells. Each cell should be 75 pixels in size.

Teacher follows the students work and at the end asks one students ti show his solution
and describe it.

Description of the solution:

Edit source code of class MyWorld (double-click on it) to create a world of size
24x12 cells. Each cell should be 50 pixels in size.

Commit: a593cd4a92d0fa0db78275614c3e41a2e96b4e57

Solution: Adjust the MyWorld class so that size of the world is24x12 with a cell size of
50x50 pixels.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/a593cd4a92d0fa0db78275614c3e41a2e96b4e57

Figure 2. Task 1.2

6. Class constructor

Objective: Introduce the class constructor

Concepts to Discuss: constructor

Activity: The teacher presents source code and introduce the concept constructor.

7. Image settings

Objective: Set the image of the world in the Greenfoot project.

Concepts to Discuss: Image settings for the World class.

Activity: The teacher explains to the students that the background of Greenfoot application
(or world) can be an image. The teacher explains to the students that the background can
either be a single image covering the entire world area or an image sized to match the cell's
dimensions.

The teacher shows how to set a image on the MyWorld class. Students follow the teacher's
instructions and work together step by step.

8. Prepare world graphics

Objective: Introduce students with background of the World class

Concepts to Discuss: background of the World class

Activity: The teacher gives assignments to students, Task 1.3: Create proper image for the
World background and set it.The teacher explains to the students what he expects them to
do. The teacher can download final projectthat have already been prepared by professor,
and show them. The teacher provides the students a link or git command to download the
initial project, which they need to update with this task (feature). The initial project can be
download from git repository.

The students do the task independently or in the group. The teacher monitors the students'
work.

The teacher demonstrates the solution step by step, while the students follow the
instructions. Description of the solution:

▪ Find or create a proper image for the world background. You may either use

prepared images (select item Set image... from the context menu of class MyWorld)

or custom image (copy image into subfolder images of your project folder and

select it using the same way as described before).

▪ As a background you may use sole image that will cover whole world’s area

(compute needed size of the image with regards to the world’s size) or smaller one,

that will be repeatedly copied (use square image with the size of the cell).

Commit:1184980643db082cfdd6bde9984bceaddf010d49

Solution: The appearance of the World with the background image applied is shown in the

next picture.

Figure 3. Task 1.3

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/1184980643db082cfdd6bde9984bceaddf010d49

3.2. Creating Classes and Objects through Game Development with Greenfoot

Title Creating Classes and Objects through Game Development with Greenfoot

Learning
objectives

By the end of this session, students will understand basic concepts of the object,
class, class properties and methods.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including object, class, class properties and methods.

Scenario
duration

1) Basic concepts(25 min)
2) Task 1.4 (10 min)
3) Task 1.5(30 min)
4) Interface of object (5 min)
5) Message and method (15 min)
6) Task 1.6 (30 min)
7) Theory revision (15 min)

Materials &
resources

Greenfoot webpage and download instructions.
Examples prepared by the teacher.
Internet resources for identification of other examples.

Description In this session, students will progress through several structured tasks to deepen
their understanding of object-oriented programming concepts. Initially, they will
spend 25 minutes creating a class named Enemy, followed by a focused 15-
minute task to define the attributes and methods within this class. Next, they will
allocate 30 minutes to instantiate an object of the Enemy class, applying their
knowledge of object creation and initialization. The concept of an object's
interface will then be explored in 5 minutes, emphasizing the definition of what
operations an object can perform. Subsequently, students will delve into the
concepts of messages and methods over 15 minutes, learning how objects
communicate through method invocation. The session will dedicate another 30
minutes to practical application, where students will send messages to their
instantiated Enemy instance, reinforcing their understanding of object behavior.
Finally, a 15-minute theoretical revision will recapitulate key concepts such as
objects, classes, instances, internal state, identity, messages, and methods,
ensuring a comprehensive grasp of the session's learning objectives.

Assessment Gamification represents non-formal assessment but will increase the interest,
intrinsic motivation and learning outputs of the whole group.

Result
dissemination

 To disseminate their results to teachers and fellow students the usual setup of
Github/Gitlab and Learning management system (e.g. Moodle will be used). The
students can continue the discussion on the topic on the forum provided to them
via the Learning management tool.

3.2.1.A teacher's Guide to Lesson Preparation

1.1. Basic concept

Objective: Determine knowledge about class, its properties, andobjects.

Concepts to Discuss: class, properties, and objects

Activity: During the introduction to the lesson, the teacher reviews previously covered
concepts with the students. Through discussion, the teacher clarifies the concepts of class,
properties of classes, and objects.

The teacher assigns a written task to the students, instructing them to identify specific
classes, their properties, associated objects, and respective values within a provided text.

The teacher selects a student from the class to present their solution. During this activity,
other students participate by offering their opinions.

Professor step by describe how to create class in Greenfoot environment. Students follow
the teacher's instructions and work together step by step.

1. Task 1.4

Objective: Involve student to work on the project.

Concepts to Discuss: create class

Activity: The teacher gives assignments to students, Task 1.4: Create class Enemy and put
appropriate image for it.

The teacher explains to the students what he expects them to do. The teacher can
download the finalproject that has already been prepared by the teacher and show them.
The teacher provides the students a link or git command to download the initial project,
which they need to update with this task (feature). The initial project for this task can be
downloaded from git repository.

The students do the task independently or in the group. The teacher monitors the students'

work.The teacher demonstrates the solution step by step, while the students follow the

instructions. Description of the solution:

Create an enemy. Enemy will march towards player’s orb to damage and eventually destroy

it. Createa new subclass of class Actor (select item Actor by right mouse click and choose

“Newsubclass”... from the context menu of class Actor). Give it proper name (Enemy) and

image.The teacher should explain the convention that class should start with capital letters

and the whole Java name convention.

Commit: 4981400623729c3d112b54454b6e6151e18426bf

Solution: The added Enemy class extends the Actor class and has defined act() class.

Figure 4. Task 1.4

 Task1.5

Objective: Introduce the state of the object. Lear students to create instance of the class in
the Greenfoot.

Concepts to Discuss: state of the object, instance

Activity: The teacher explains the concept of the state of the object with a simple
example.For example, the teacher is positioned in the classroom at a specific distance from
the front door. This distance determines their location, with steps forward or backward
altering their proximity to the door. Hence, the teacher's position relative to the front door
can be quantified by a variable that changes over time. Thus, the teacher's position is
defined by the distance from the front door, illustrating how the state of an object—in this
case, the teacher—is characterized by the value of its attribute (distance) at any given
moment.

Teacher describe task 1.5 how to create instance of the class Enemy. Teacher opens the last
version of the project while students follow the teacher's instructions and work together
step by step.

Teacher creates an instance of class Enemy (select item by mouse right click new Enemy () from the
context menu of class Enemy, put instance into world by left mouse click on desired position).
Investigate its internal state (select item place into the World by right mouse click and choose
Inspect from the context menu of the created instance).

The teacher asks students to create a new instance and put it in another position to compare
internal states of two created instances.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4981400623729c3d112b54454b6e6151e18426bf

2. Interface of object

Objective: Introduce the students with interface as a set of action that we can perform on
some object.

Concepts to Discuss: interface

Activity: The teacher introduces the concept of an interface to students through simple
examples. For instance, if we observe a person and the activities they perform during the
day (such as waking up, having breakfast, going to work) without delving into specific
details—like how they wake up (whether by an alarm clock, phone, or a parent), what and
where they eat breakfast, or their mode of transportation to work—the collection of these
activities can be likened to an interface. An interface defines what actions objects of a
certain class can perform but does not specify how those actions are carried out or
executed. We don't define what he eats for breakfast, how he went to work (on foot, by car
or by bus) or how he woke up (whether someone called him or the clock wake him up).

3. Message and method

Objective: Introduce students with method concept.

Concepts to Discuss: class method

Activity: The teacher introduces the concept of the method. To explain the concept of a
method, the teacher connects the concepts of properties (characteristics, attributes) and
changing values for those properties.

Example: If we consider the class Person and the property age, its value increases by one

every year, consistently on the same day. On the other hand, if we look at properties like

height and weight, these characteristics change frequently—people grow and their weight

fluctuates.

Example: If we observe the movement of a person from point A to point B, and describe

this movement in steps—such as stepping forward, turning left by 45 degrees, taking 8

steps forward, turning right by 30 degrees, and taking 5 more steps forward—these

individual actions can be grouped into what we call a method.

The teacher shows the students in Greenfoot how they can look at the methods a class has

that can be called on a specific object.

The teacher shows the methods defined in the Actor class. Theteachershowshow to
callmethods on anobject.

4. Task 1.6

Objective: Introduce students how to call method on instance object.

Concepts to Discuss: call methods

Activity: Teacher describes task 1.6 send a message to instance of class Enemy (calling the
method). Teacher opens the last version of the project while students follow the teacher's
instructions and work together step by step.

Teachersends messages to the instance of class Enemy so it will move into position [12, 6]
and it will be facing down (by right click to the object in the Worls, select inherited from

Actor and than select method setLocation(int, int)). Describe the students what will happen
with the instance. How was the internal state of respective instance affected?

The teacher demonstrates to the students how methods are defined. He creates a
setPosition(int x, int y)method for setting the Actor to specific coordinates. The teacher
emphasizes that this method is equivalent to setLocation(int x, int y) and stresses the
importance of checking if a method already exists before defining a new one to avoid
duplication. It's emphasized that method names should clearly indicate their purpose and
functionality, allowing immediate understanding from the name alone. The teacher also
underscores that method names should be concise and provides examples of well-defined,
poorly-defined, and improperly-defined methods. Methods that the user can perform (call)
are visible by right clicking on an object.

Professor describes how to define method.Students follow the teacher's instructions and
work together step by step.

The teacher asks the students to define the method by which the Actor is lowered
(decreases the y-coordinate) and the method by which it is raised (increases the y-
coordinate).Teacher follow the students how they work on the task and give instruction
one by one if it is necessary.

5. Theory revision

 Objective: Summarizethe concept that covered in the lecture.

Concepts to Discuss: object, class, instance, internal state, identity, message, method.

Activity:Teacher summarizes the concept that covered in the lecture.

4. Algorithm

Two teaching scenarios have been created within the Algorithm thematic unit.

4.0. Introduction to Algorithms in the Greenfoot Environment

Title Introduction to Algorithms and Algorithmic Thinking

Learning
objectives

By the end of the scenario, students should have a solid understanding of
algorithms and algorithmic thinking, be proficient in designing and implementing
basic algorithms, and be able to apply algorithmic concepts to solve a variety of
problems effectively.

Target
audience

Secondary school students attending the OOP4Fun course. Students should have
a basic programming knowledge, including variables, functions, iteration and
selection concepts, proficiency in logical reasoning and problem-solving skills.
Students should be introduced to Greenfoot.

Scenario
duration

1) Introduction to basic algorithms as a sequence of steps (15 min)
2) Task 2.1 (20 min)
3) Algorithm and its properties (15 min)
4) Task 2.2 (25min)
5) Algorithmisation (15 min)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this learning scenario, secondary school students will delve into the realm of
algorithms and algorithmic thinking. The session begins with a 15-minute
introduction aimed at familiarizing students with basic algorithmic concepts,
highlighting their significance in problem-solving.

Following the introduction, students will engage in a 20-minute task where they
are tasked with writing a simple algorithm to address a specific problem. This
hands-on activity allows students to apply the concepts introduced earlier and
hone their algorithmic skills.

Subsequently, a 15-minute segment will be dedicated to discussing algorithms
and their properties. Topics covered will include correctness, efficiency, and
scalability, emphasizing the importance of clear and precise instructions in
algorithm design.

Building upon their understanding, students will spend the next 25 minutes
crafting a more general algorithm for a slightly complex problem. This task
challenges students to think abstractly and critically, applying algorithmic
principles to tackle real-world scenarios.

In the final 15-minute segment, students will engage in algorithmization,
analyzing and refining their algorithms. This process involves identifying
potential improvements, optimizing efficiency, and ensuring the robustness of
the algorithms.

Throughout the session, students will work individually or in small groups,
fostering collaboration and peer learning. By actively participating in writing and
analyzing algorithms, students will develop critical thinking skills and
computational problem-solving abilities.

At the conclusion of the session, students will have a deeper understanding of
algorithms and algorithmic thinking, equipping them with essential skills for
approaching complex problems systematically and effectively.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

4.1.1. A teacher's Guide to Lesson Preparation

1. Introduction to basic algorithms as a sequence of steps

Objective: Introduce the algorithm.

Concepts to Discuss: basic of the algorithm

Activity:The teacher introduces the concept of algorithm through examples from real-life.
For example, the teacher asks the students what they do in the morning from the time they
wake up until the time they come to school. The teacher then asks the students if they
know how to make a pizza or a hot sandwich, or if any of them know a recipe for making a
dish or a cake.

The teacher connects the process of making a meal or cake with making a program and
emphasizes that just as there is a recipe for preparing a meal, there is also a "recipe" for
making a program called an algorithm.

The teacher concludes that an algorithm is a set of steps that define how a program is
executed.

The teacher further explains that this set of steps does not necessarily always have to be
executed sequentially, one after the other, that there are some steps in the algorithm that
can be executed depending on some condition. The teacher asks the students to give an
example of such a case (for example, if we are writing an algorithm for preparing a hot
sandwich, if we do not have an ingredient, for example ham, but we have a similar
ingredient, we can replace it, or go to the store and get missing ingredient).

The teacher explains to the students that some steps in the algorithm can be repeated
several times. The teacher asks the students to give an example of an algorithm in which
the steps are repeated several times.

2. Task 2.1

Objective:Introduce students how to write simple algoritm.

Concepts to Discuss: algorithm

Activity:The teacher assigns the students task 2.1 to write on paper the procedure by
which they describe how a pedestrian crosses the street.

At the beginning, the teacher does not give additional instructions to the students but
follows how they think and work. If someone asks a question that is important for the
description of the instructions for pedestrians crossing the street, he praises him and
emphasizes why this information is important.

After some time, the teacher asks the students if they have paid attention to where the
pedestrian crosses the street, whether it is a marked place to cross or not. Also, the teacher
asks the students whether they have considered whether there is a traffic light at the
pedestrian crossing or not.

At the end, the teacher chooses a few students who should read their instructions for

crossing the street.

3. Algorithm and its properties

Objective: Introduce students with algorithm properties

Concepts to Discuss: algorithm properties

Activity:The teacher further explains to the students about the properties of an algorithm.
The teacher explains to the students that algorithms can also be shown graphically and
gives an example of algorithms that are graphically represented.

4. Task 2.2.

Objective: Write a more general algorithm

Concepts to Discuss: write algorithm

Activity:Make a general algorithm for the preparation of a hot drink. Think about what the
inputs of such an algorithm need to be for it to be general.

5. Algorithmisation

Objective: Give more examples to the students and include students to define its own

Concepts to Discuss: Algorithm

Activity:The teacher explains to the students that even in mathematics there are certain
algorithms that we use in solving problems. The teacher asks the students if they can give
an example.

The example that the teacher explains to the students is an example of calculating the

value of an arithmetic expression that has several mathematical operations, where it is

necessary to respect the rules of priority of performing mathematical operations.

Also, the teacher gives some other examples, such as assembling new furniture that has

been purchased and coming with instructions that describe how to assemble this furniture.

An example can be the instructions we receive through the GS device when we want to go

from point A to point B via navigation.

The teacher asks the students to write on the paper their own algorithm, after which some

of them present the result.

4.1. Greenfoot Adventures: Unraveling Java Method Invocation, Documentation,

and Application Control

Title Greenfoot Adventures: Unraveling Java Method Invocation, Documentation, and
Application Control

Learning
objectives

By the end of the scenario, students should have a solid understanding of Java
method invocation, particularly focusing on the 'act()' and 'move()' methods
within the Greenfoot environment. They should be proficient in effectively
utilizing the 'this' keyword to reference current objects within a class context.
Additionally, students should demonstrate the ability to call methods within a
class, comprehending the syntax and parameters required for method
invocation. They should also showcase proficiency in applying method calling
techniques to effectively solve interactive game development tasks.
Furthermore, students should grasp the importance of code documentation and
be able to document Java code effectively, ensuring clarity and readability.
Lastly, they should master application control techniques within Greenfoot,
enabling precise manipulation and interaction with game elements to create
engaging and functional game mechanics.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including iteration and selection concepts.Students should be
introduced to Greenfoot.

Scenario
duration

1) Explanation of act () method (10 min)
2) Explanation of move() method (20 min)
3) Introducing keyword this (5 min)
4) Task 2.3 (10 min)
5) Explanation of Autocompleting (5 min)
6) The importance of code documentation (15 min)
7) Task 2.4 (5 min)
8) Task 2.5 (5 min)
9) Task 2.6 (10 min)
10) Task 2.7 (20 min)
11) Discussion: Algorithm, properties, algorithmisation, Greenfoot buttons (5

min)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 105-minute learning scenario, secondary school students will embark on a
journey to master Java method invocation, code documentation, and application
control within the Greenfoot environment.

The session kicks off with a 15-minute exploration of the 'act()' method, followed

by a 10-minute dive into the 'move()' method, essential components in
Greenfoot programming.

Students will then spend 5 minutes delving into the significance of the 'this'
keyword in referencing current objects within a class context.

Following this, a 10-minute task awaits students, challenging them to practice
calling methods within a class, applying the syntax and parameters required for
method invocation.

A 5-minute explanation of autocompletion features in Greenfoot environment
follows, focusing on enhancing coding efficiency.

For the next 15 minutes, students will grasp the importance of code
documentation, understanding how clear and concise documentation enhances
code readability and maintainability. In a 5-minute task, students will add
documentation to their code, ensuring clarity and comprehensibility for
themselves and others. Building upon this task, students will spend an additional
5 minutes adding more detailed documentation to their code.In a 10-minute
task, students will explore and read documentation added by their peers, gaining
insights into different coding styles and approaches.

Finally, students will spend 20 minutes exploring application control techniques
within Greenfoot, enabling precise manipulation and interaction with game
elements to create engaging and functional game mechanics.

Throughout the session, students will work individually or in small groups,
fostering collaboration and peer learning. By actively participating in writing and
analyzing code, students will develop critical thinking skills and computational
problem-solving abilities.

At the session's end, students will emerge with a deeper understanding of Java
method invocation, code documentation, and application control in Greenfoot,
equipping them with essential skills for game development and beyond.

Assessment Gamification represents non-formal assessment but will increase the interest,
intrinsic motivation and learning outputs of the whole group.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. Moodle will be
used). The students can continue the discussion on the topic on the forum
provided to them via the Learning management tool.

4.1.1. A teacher's Guide to Lesson Preparation

1. Explanation of act() method

Objective: Explain the using of the act() method. Explain calling the method from the other
method.

Concepts to Discuss:method act()

Activity:Teacher open the last version of the TowerDefinse project.The teacher puts
instances of the Enemy class to position 0,0. The teacher asks the students what will
happen when we call the act() method on an instance of the Enemy class. Is it the expected
behavior?

Teacher ask student to help him to done task, to move the object of the Enemy class two
cells in the current direction when we call act() method.

The teacher shows the students how to do this task (adding the move(int) method call
inside the act() method), while the students follow the teacher's instructions and give him
ideas.

2. Explanation of move() method

Objective: Explain the move() method and how to move forward and backward.

Concepts to Discuss: methods for movements

Activity:The teacher explains the move(int) method. The teacher puts instances of the
Enemy class in different position and calls method passsing the positive values, for example
1 or 3.Teacher ask the students, what they think, what will happen if they call the move()
method and enter negative values, for example -1.

The teacher assigns the students a task to write a backward() method that moves an object
1 step backward. Is it possible to move object 2 steps back and X steps? What we need to
do?

3. Introducing keyword this

Objective: Introducing keyword this

Concepts to Discuss: keyword this

Activity:Teacher introducing keyword this.

4. Task 2.3.

Objective: Learn students how to write method to move object vertically changing the
value of y axis.

Concepts to Discuss: method invocation

Activity:Teacher asks the students how to move the object vertically, up or down?The
teacher asks student to find suitable method for up/down move by right click on an object
and selecting Inherited from Actor. Student should recognize following methods: turn,
setRotation, setLocation, getLocation, getRotation.The teacher assigns the students the
task to write the method up() and down(). The teacher monitors the students' work and at
the end explains together with them how to implement these methods. The methods up()
and down() change the value of coordinate y, increase and decrease respectively. Here
teacher can introduce the method parameters but without details.

Commit: 7ba327ebeba6a13be68d9d21cc7e74b0da376132

Solution: The act()method should be changed in order to move the Enemy.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/7ba327ebeba6a13be68d9d21cc7e74b0da376132

Figure 5. Task 2.3

5. Explanation of Autocompleting

Objective: Introduce students with autocomplete in Geeenfoot enviroment

Concepts to Discuss: autocomplete (CRTL+SPACE)

Activity:Teacher describe students how to find metod on the object that thay can call if
thay forgot the name or if thay just start coding and want to „ask“ Greenfoot enviroment
to help them to finish writing code faster.

6. The importance of code documentation

Objective:Introduce students withcommentsanddocumentation

Concepts to Discuss: comments and documentation, explore the documentation window.

Activity:Teacher introduces students with a statement in the code that is not part of the
execution (comments, documentation comments).

Teacher need to emphasize differents between comments and documentations (as a
special type of comments).

Teacher presents students source code of the Enemy class and after that generated html
document that decribes documentation of the Enemy class. Teacher descibes here that
there is some rule that we need to follow when write documentation for our class or
methods.

Teacher assigns task to student to explore how to write documentation for Java class and
methods.

7. Task 2.4.

Objective: Introduce student with method documentation tag

Concepts to Discuss: method documentation tag,

Activity:Teacher assigns task students to add a documentation comment for the act()
method.

Commit: 68b1c82c7df2c7826f2d3f78373498569adab7e9

Solution: Add the comment above the act() method which describes what the method

does.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/68b1c82c7df2c7826f2d3f78373498569adab7e9

Figure 6. Task 2.4

8. Task 2.5.

Objective: Introduce student with class documentation tag

Concepts to Discuss: class documentation tag

Activity:Teacher assigns task students to add a documentation comment for the act()
method.

Edit the documentation comment of the Enemy class. Add the version of the class and its
author and see the changes in the html generated page.

Commit: 1a7a9f83c5271a7c0dfa46ce3b1ee65682b0c5e5

Solution: The version and the author in the comment above the Enemy class should be

modified.

Figure 7. Task 2.5

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/1a7a9f83c5271a7c0dfa46ce3b1ee65682b0c5e5

9. Task 2.6.

Objective: Learn students to explore documentation of the class in order to meet methods

Concepts to Discuss: explore documentation

Activity:Teacher assigns task students to explore the documentation window and read

documentation for the Actor and Window class. Teacher emphasize importants of reading

documentation in order to discover methods that can be useful.

10. Task 2.7.

Objective: Introduce students with Greenfoot buttons

Concepts to Discuss: Greenfoot buttons

Activity:Theacher continue to work on the last version of the project.The teacher asks the
students to add two instance object of the Enemy class and call the act() method on each
instance.

Teacher describes GreenfootAct button.Teacher clicks the GreenfootAct button located on
the main window. The teacher asks a questionfor them to conclude and explain what
happened.

Also, the teacher asks the student to click on the Run button and to conclude what
happened.

The teacher asks the students to click the Reset button and explain what happened. After
that, the teacher explains what needs to be done so that every time the Reset button is
clicked, two objects of the Enemy class appear on the board at positions (0,3) and (3,3).

The teacher should explain to the students that if he wants the objects to appear on the
stage every time the Reset button is clicked, it is necessary to change the constructor of the
World class, so that those objects are created in the constructor and placed in the desired
positions.

11. Discussion: Algorithm, properties, algorithmisation, Greenfoot buttons

Objective: The teacher summarizes the lesson.

Concepts to Discuss: method form movements, Greenfoot buttons, documentation

Activity:The teacher summarizes the lesson. The professor can emphasize here important

of the code documentation, rules for method and class namingconvention.

5. Branching

Two teaching scenarios have been created within the Branching thematic unit.

5.0. Exploring Branching through Game Development with Greenfoot – Incomplete

code branching

Title Exploring Incomplete Branching through Game Development with Greenfoot

Learning
objectives

Topic covers incomplete branching (multiple branching is intentionally omitted).
Basics of Actor’s World perception is introduced. Students will be capable of
writing code using conditions. Upon finishing this topic, students will learn how
to use simple if-else statements and learn how to make decisions in their code
controlling how their game behaves. They will gain a basic knowledge of Java
programming language, learning the necessary syntax and to analyze and
understand code, helping them understand why their game behaves a certain
way and how to fix issues. Students will be able to create their own game
projects using what they’ve learned about object-oriented programming.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including variables, functions, iteration and selection concepts.
Students should be introduced to Greenfoot in general.

Scenario
duration

1) Introduction (5 minutes)
2) Code explanation (15 minutes)
3) Incomplete branching(10 minutes)
4) Observing the players’ state (10 min)
5) Adding world edge detection (10 min)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from GitHub/Gitlab.
Internet resources.

Description The session begins with a 15-minute code explanation of the turn() method,
which sets the stage for understanding incomplete code branching. This
discussion is led by the teacher and is aimed at bringing students to a common
understanding of the method's role in the actors world.

Following this, a 10-minute segment is dedicated to acquiring basic concepts
related to incomplete branching. This acquisition phase is crucial for students to
grasp the foundational principles before delving into code writing.

Next, the students engage in a 10-minute investigation task, where they observe
the player state within their code, fostering a deeper understanding of the
program's flow based on the source code.

The subsequent 10-minute production phase involves adding world edge

detection to their project, adding behavior and setting up the game.

Assessment This activity will enable teachers to give formative assessment feedback based
upon the discussions and monitoring of students’ flipped classroom.

The peer-review assessment will be performed online as a part of a homework
assignment. This will remind students of important aspects of the exercise, will
make them critically assess other students' work, will give them insights into
good or not so good solutions of their peers etc., and will increase the overall
achievement of learning outcomes.

The work in the team-project that the students are working on will also use these
learning outcomes and knowledge.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of GitHub/Gitlab and Learning management system (e.g. Moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

5.0.1. A teacher's Guide to Lesson Preparation

1. Introduction

Objective: The teacher discusses with the students the concepts that were covered in the

previous lesson. Teacher introduces goals for this teaching session.

Concepts to Discuss: algorithm, code documentation

Activity: In the introductory part of the lesson, the teacher reviews with the students the

concepts adopted from the previous lesson. The teacher then introduces the new material

that will be studied in today's class. To illustrate today's lesson, the teacher presents an

example of an algorithm with simple branching. One example could be the algorithm for

crossing the street at a pedestrian crossing where there is no traffic light. The pedestrian

does not cross the street immediately but first ensures there are no vehicles coming from

the left or right. If there are no vehicles, then the pedestrian crosses the street.

2. Code explanation

Objective:

Concepts to Discuss:

Activity:The teacher downloads the latest version of the project:

• From Moodle platform

• Fromgit repository

The teacher creates and places an Enemy class object somewhere on the board. It explains

some methods of the Actor class:

• move(int)

• turn(int)

• setRotation()

While explaining the methods, the teacher also shows how certain properties of the class
are changed (for example, the position of the object on the board, ie the x and y values).
The teacher discusses with the students how to supplement the act() method so that every
time the act() method is called, the Enemy class object should move two steps forward.

3. Incomplete branching

Objective:

Concepts to Discuss: branching, incomplete branching

Activity:The teacher continues to work on the project. The teacher places an Enemy class
object on the board. The teacher explains to the students how they can check if the object
is in the upper half of the board and displays the message "Found".

The teacher explains to the students the showText() method, which is used to display text.

4. Observing the players’ state

Objective:

Concepts to Discuss: internal state of the instance

Activity: The teacher creates an instance of the Enemy class and places it in the center of
the board. The teacher opens a window with the internal state of the instance and
positions it so that it is visible while the application is running. Then run the application and
observe how the values of the x, yand rotation attributes in the Enemyclass change when
call different methods. How do these values change as you move (up, down, left, and right)
and turn?

5. Adding world edge detection (10 min)

Objective:

Concepts to Discuss: world edge detection

Activity: The teacher discusses with the students how they can determine whether an
object is on the edge or not. For example, as far as we know the dimensions of the table,
based on the position (x,y) it can be determined whether the object is on the edge of the
table or not.

Teacher puts the instance somewhere in the world (but not on the edge), invoke method
IsAtEdge(). He discuss with students what happened. The teacher move the enemy to the
edge and examine the result of method IsAtEdge(), which should now return true.

The teacher explains the method isAtEdge().

Task 3.2: Teacher assigns task to students to add code to the body of the act() method to
rotate the enemy 180° by calling the setRotation() property, when it reaches the edge of
the world.

The teacher discusses with the students how an object that has reached the edge can
continue its movement:

• backwards (without turning)

• backwards (with turning)

Together with the students, the teacher completes the program code of the act() method.

Now, run act() method and discuss what happens with the enemy once it reaches the e
edge of the Wold.

 Commit: 4927c3ff7eb39b51ba2738f2ab500fd6c32e3bb4

Solution: In the act() method of the Enemy class, detection of the World’s edge should be
added.

Figure 8. Task 3.2

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4927c3ff7eb39b51ba2738f2ab500fd6c32e3bb4

5.1. Exploring Branching through Game Development with Greenfoot: Complete

code branching

Title Exploring Complete Branching through Game Development with Greenfoot

Learning
objectives

Topic covers incomplete and complete branching (multiple branching is
intentionally omitted).Basics of Actor’s World perception is introduced. Students
will be capable of writing code using conditions.Upon finishing this topic,
students will learn how to use simple if-else statements and learn how to make
decisions in their code controlling how their game behaves. They will gain a basic
knowledge of Java programming language, learning the necessary syntax and to
analyze and understand code, helping them understand why their game behaves
a certain way and how to fix issues. Students will be able to create their own
game projects using what they’ve learned about object-oriented programming.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including variables, functions, iteration and selection concepts.
Students should be introduced to Greenfoot in general.

Scenario
duration

1) Add classes Direction and Orb (30 min)
2) Collision detection explanation (30 min)
3) Task 3.4
4) Task 3.5
5) Task 3.6
6) Code explanation: Complete branching (15 minutes)
7) Task 3.7 (20 minutes)
8) Task 3.8 (30 minutes)
9) Revision (5 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from GitHub/Gitlab.
Internet resources.

Description The session starts with a 30-minute practice session to add classes Direction and
Orb. This helps students comprehend the object-oriented nature of Java and the
importance of structuring code properly.A 20-minute code explanation follows,
focused on the concept of collision detection, which helps students understand
object interactions within their game environment.Then, students spend 10
minutes adding collision detection to their project in another production task,
utilizing their understanding of branching.

Investigative tasks of 15 minutes each are assigned next, where students are
tasked to predict enemy movement in both a custom and a tricky setup,
enhancing their problem-solving and analytical skills.Another 15-minute
discussion session is focused complete branching, ensuring that students can

differentiate between incomplete and complete code structures.

A 20-minute production task engages students in using full branching with
collision detection, aiming to consolidate their learning by applying complex
concepts in a practical setting.The session concludes with a challenging 30-
minute investigative task where students again predict enemy movement, this
time with the added experience from the previous tasks, thus applying their
cumulative knowledge.

The session ends with 5-minute theory revision of the learned concepts.

Assessment This activity will enable teachers to give formative assessment feedback based
upon the discussions and monitoring of students’ flipped classroom and
teamwork.

The peer-review assessment will be performed online as a part of a homework
assignment. This will remind students of important aspects of the exercise, will
make them critically assess other students' work, will give them insights into
good or not so good solutions of their peers etc., and will increase the overall
achievement of learning outcomes.

The work in the team-project that the students are working on will also use these
learning outcomes and knowledge.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of GitHub/Gitlab and Learning management system (e.g. Moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

5.1.1. A teacher's Guide to Lesson Preparation

1. Add classes Direction and Orb

Objective: Understand how to add new class in the project.

Concepts to Discuss: class

Activity: Teacher adds assignment to students to work on Task 3.3.Teacher followsthe

studentsactivities, and in the end, he asks one student to present his work. The student

describes and presents his work.

Task 3.3: Create two new classes, descendants of the Actor class. The first class will be

Direction class and the second class will be Orb. Prepare suitable (max. 50x50 pixel) images

in a graphical editor. Then assign these images to the newly created classes.

Commit: 4ed6b37e6d481181d8b340639aa03391406b6c2e

Solution: Two new classes should be added – Orb and Direction. The followingcode for the

class Orb is generated, when the class is created in the Greenfoot.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4ed6b37e6d481181d8b340639aa03391406b6c2e

Figure 9. Task 3.3.1

Similar code is generated when the Direction class is created.

Figure 10. Task 3.3.2

The appropriate images should be set for both classes.

2. Discussion:Collision detection explanation

Objective: Explain the collision detection.

Concepts to Discuss: collision detection

Activity:The teacher put an instance of the Enemy class on the World, and an instance of

the Direction class in the same row. The teacher adds code to the act() method so that the

object moves one step forward.

The teacher explains to the students how to determine whether two or more objects
("characters") on the World are in the same position (on the same cell). The teacher
explains the method: isTouching().

The teacher and students modify the act() method of the Enemy class to ensure that the
enemy rotates 90° clockwise when it is in the same cell that contains an instance of the
Direction class.

Together with the students, the teacher observes what happens with the rotation

attribute.

3. Task 3.4

Objective: Students understood how to determinate if two objects are in the same cell.

Concepts to Discuss: -

Activity: Teacher adds assignment to students to work on task 3.4. Teacher follows the

students activities, and in the end he asks one student to present his work. The student

describes and presents his work.

Task 3.4: Add code to the act() method of the Enemy class to ensure that:

• the player turns 90° counter clockwise when he enters a cell the contains an

instance of the Orb class.

Commit: 968e6f195e3def25e11bc41b664ba1715f7da11d

Solution: The act() method should be modified in order to turn the player when the

collision occurs.

Figure 11. Task 3.4

4. Task 3.5

Objective: Understand the objects movements.

Concepts to Discuss: objects movements

Activity:Teacher adds assignment to students to work on task 3.5. Teacher follows the

students activities, and in the end he asks one student to present his work. The student

describes and presents his work.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/968e6f195e3def25e11bc41b664ba1715f7da11d

Tasks 3.5: Prepare different configurations, inspiration can be found in the figures below.

Guess how the enemy will move? Run the application. Does your prediction match what

you observe? What caused differences in prediction and reality?

.

a) b) c)

Figure 12. Task 3.5: Configurations of custom setups of instances to predict movement of instance of class Enemy

5. Task 3.6

Objective: Student understood the objects movements.

Concepts to Discuss: objects movements

Activity: Teacher adds assignment to students to work on task 3.6. Teacher follows the

students activities, and in the end he asks one student to present his work. The student

describes and presents his work.

Tasks 3.6:Prepare the situation as depicted in the figure below. Guess how the enemy will
move? Run the application. Does your prediction match what you observe?What caused
differences in prediction and reality?

a) b) c)

Figure 13. Task 3.6: Configurations of tricky setups of instances to predict movement of instance of class Enemy

6. Code explanation: Complete branching

Objective: Teacher taught the students when and how to use if-then-else and switch
statement.

Concepts to Discuss: if-then-else statement, nested if statement,switch statement

Activity: The teacher assigns the students the task of describing on paper how a pedestrian

crosses the street. The teacher monitors how the students solve the task. At some point

the teacher emphasizes to the students to pay attention to whether or not there is a traffic

light at the place where the street is crossed.If in the meantime, that is before the teachers

emphasize this, one of the students asks this question or something similar, he publicly

praises him and emphasizes that it is important that before coding we should always

analyze the problem first and identify all cases the can occurred. Here students should

understand complete and nestad branching.

Teacher will ask the students to put objects Orb and Distance class to the left, right to or

right place – to the different borders of the World. Students will describe Enemy “bad”

behavior. Teacher should explain that there are to conditions satisfied at one situation. The

enemy is touching Ord/Description class and is touching the edge. By drawing the situation

on the table and paper students will recognize that complete and nesting branching is

needed and then students change the code of enemy behavior.

7. Task 3.7

Objective: Student understood complete branching nested if and switch statement .

Concepts to Discuss: nested if statement, switch statement

Activity: Teacher adds assignment to students to work on task 3.7. Teacher follows the

students activities, and in the end he asks one student to present his work. The student

describes and presents his work.

Task 3.7.After the code of the method act() of class Enemy so that it will use full branching.
You will create a nested conditions. Make the detection of the edge the most important
check, then check the touch of the instance of Direction class and lastly check the touch of
the instance of Orb class.

Commit: f017de8b49d4fc77f62afac4d842429560bcfb8b

Solution: The act() method should be modified to handle additional conditions.

Figure 14. Task 3.7

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/f017de8b49d4fc77f62afac4d842429560bcfb8b

8. Task 3.8

Objective: Predict enemy movement on custom setup

Concepts to Discuss: object behaviour

Activity: The teacher puts objects arbitrarily in the World, and the students explain their

 movement and behavior (independently or in pairs).

Tasks 3.8:Run through tasks Error! Reference source not found. and Error! Reference source

not found. again. What changed?

9. Revision

Objective: The teacher summarizes the lesson.

Concepts to Discuss: concept of the branching

Activity:The teacher summarizes the lesson.

6. Variable and expressions

Five teaching scenarios have been created within the Variable and expressions thematic

unit.

6.0. Introduction to Variables and Data Types in theGreenfoot Environment

Title Introduction toVariables and Data Types in theGreenfoot Environment

Learning
objectives

By the end of this session, students will be able to understand data types and
variables. Understanding of the examined concepts will be discussed in the
context of the game development, encouraging creativity, teamwork, and an
enthusiastic approach to coding with theGreenfoot tool.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledgeincluding variables and data types.Students should be introduced to
Greenfoot.

Scenario
duration

1) Introduction (10 minutes)
2) Variable identification (5 minutes)
3) Data types (15 minutes)
4) Declaration of variables (10 minutes)
5) Initialization of variables (5 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 45-minute learning scenario, secondary school students are introduced to
programming principles related to data types and variables through the lens of
game development using the Greenfoot tool. The session starts with a 10-minute
introduction by the teacher, establishing the context related to the previous
sessions, which creates the basis for variable introduction and definition.

This is followed by a 5-minute scenario, during which students and teachers
research and identify variables for their game. Taking into account that each
variable must be of a certain type, in the next 15 minutes various data types are
presented.

The core activities encompass a 10-minute teacher-guided session, during which
students declare variables for their game, emphasizing the importance of
variable names and types. This is followed by a 5-minute session related to
variable initialization, in which variable values are defined. In this context,
behavior of objects in the game can be changed (e.g., rotation of an object,
movement of an object).

The students will continue working on the game that was explained and
startedintheprevious sessions. As a result, at the end of the session novel
concepts related to variables and data types are introduced.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

6.0.1. A teacher's Guide to Lesson Preparation

1. Introduction

• In the introduction section context related to the previous sessions isestablished. The
teacher introduces the term variable.

2. Variable identification

Objective:Variable identification through discussion, emphasizing the role of variables in
programming.

Concepts to Discuss:Variables and values.

Activity:

▪ Teacher introduces the term variable,
▪ Students can be asked to research and identify variables for their game,
▪ The variables can be discussed by the teacher and peers,
▪ In this scenario, variable type can be omitted (or discussed in general).

3. Data types

Objective: Understanding the concept of data types, recognize their real-world
applications, and focusing on the variable types needed for game development.

Concepts to Discuss: Variables, Data types, Real-world data type examples, Variable types
for the game.

Activity:

o Teacher introduces the term data type,

o Examples from real-word can be discussed (e.g., integer numbers can be related to
number of currently present students, decimal numbers can be related to a product
price, text type can be related to instant messaging text, etc.),

o Data types are considered in the context of the Greenfoot Environment and Java
programing language,

o Detailed discussion related to variable types required for the game.
4. Declaration of variables

Objective:Applying the concepts of data types and variables, and declare variables
necessary for game development.

Concepts to Discuss: Variables, Data types, Variable types for game.

Activity:

o Data types are considered in the context of the Greenfoot Environment and Java

programing language,

o Teacher should explain the difference between declaration and initialization of

variables:

▪ In variable declaration, variable of a specific data type is declared, but value

may/may not be present,

▪ Analogy can be introduced (e.g., labeled box for a specific cookie type, but

without cookie inside the labeled box),

o Declaration of Game-required variables.

o Additional examples can be considered. For example, if act() method is considered,

variable for displaying text can be declared.

5. Initialization of variables

Objective: Applying the concepts of data types and variables, and initialize variables
required for the game.

Concepts to Discuss: Variables, Data types, Variable values for game.

Activity:

o Based on previously presented data types, their data values and data ranges are

introduced,

o Data values and data ranges are considered in the context of the Greenfoot

Environment and Java programing language,

o Teacher should explain the difference between declaration and initialization of

variables:

▪ In variable initialization, variable of a specific data type is declared and can

be initialized at the same time (this is called: initial value), and can be

changed in the following code,

▪ Analogy can be introduced (e.g., cookie of a specific cookie type is placed in

the previously defined labeled box),

o Initialization of game-required variables.

o Additional examples can be considered. For example, if act() method is considered,

variable for displaying text can be initialized.

6.1. Introduction to Operators and Expressions in the Greenfoot Environment

Title Introduction to Operators and Expressions in theGreenfoot Environment

Learning
objectives

By the end of this session, students will be able to understand the concept of
operators. The session introduces various operator types (i.e., arithmetic
operators, boolean operators, relational operators), as well as their respective
expressions. In addition, object expression and reference variable will be
introduced. The examined concepts will be discussed in the context of the game
development, encouraging creativity, teamwork, and an enthusiastic approach to
coding in the Greenfootenvironment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including iteration and selection concepts.Students should be
introduced to Greenfoot.

Scenario
duration

1) Operators (15 minutes)
2) Arithmetic operators and expressions (10 minutes)
3) Boolean operators (15 minutes)
4) Relational operators (10 minutes)
5) Boolean expressions (10 minutes)
6) Object expression (5 minutes)
7) Reference variable and its null value (15 minutes)
8) Task - Turn in direction (15 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 95-minute learning session, secondary school students are
introduced to programming concepts related to operators and expressions
within the context of game development using the Greenfoot tool. The session
starts with a15-minute introduction by the teacher, providing background
information from previous sessions, which creates the basis for
operatorintroduction and definition.

This is followed by a 10-minute scenario, during which arithmetic operators and
expressions are discussed.Arithmetic operators are used for arithmetic
operations. In this context, various operators and expressions in the Greenfoot
environment are practically explained and discussed.

The next 15-minute session introduces boolean operators. This are logical
operators used to manipulate boolean values. This is followed by a 10-minute
session related to relational operators which are used for comparing values.
Based on the previous sessions, the next 10-minute scenario discusses boolean
expressions in the context of the Greenfootenvironment.

The next 5-minute session focuses on object expression, while the following 15-
minute section discusses reference variables.

Finally, this is followed by a 15-minute teacher-guided session, during which
students solve task related to turn in direction for their game. The feedback
provided by the teacher and peers is included in this session.

The students will continue working on the game project initiated in the previous
sessions. Consequently, by the end of the session, they will be introduced to
concepts related to operators and expressions.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

The state of the project opens possibilities for home assignments. In this context,
more classes, expressions and values can be introduced to achieve additional
behavior (e.g. teleports, tunnels, etc.).Theseconcepts can be discussed with
students and the respective implementation can be assigned as homework.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

6.1.1. A teacher's Guide to Lesson Preparation

1. Operators

Objective:Understanding the concept of operators, relate them to real-life scenarios, and
learn about various types of operators.

Concepts to Discuss:Variables, Data types, Operators, Real-world examples of operators.

Activity:The teacher introduces the term operator. The teacher should make this concept
more relatable to students by using real-life examples (e.g., buying products at the market).
Afterwards, the teacher introduces various operator types.

2. Arithmetic operators and expressions

Objective: Understanding the concept of arithmetic operators, relate them to real-life
scenarios, and learn about various arithmetic operators.

Concepts to Discuss: Variables, Data types, Operators, Real-world examples of arithmetic
operators.

Activity:Teacher can explain operators already known from other courses (e.g., math and
math arithmetic operators).These operators are considered in the context of the Greenfoot
Environment and Java programing language,Teacher discusses various terms: operator,
operand, operator precedence.Additional examples can be considered. Additionalexample
may include defining local variables to retrieve and manipulate an entity's x-position and y-
position, thereby changing its position by increasing the variable's values.

3. Boolean operators

Objective: Understanding the concept of booleanoperators, relate them to real-life
scenarios, and learn about various boolean operators.

Concepts to Discuss: Variables, Data types, Operators, Real-world examples of
booleanoperators.

Activity:Teacher can explain operators already known from other courses (e.g., math and
math Boolean operators). These operators are considered in the context of the Greenfoot
Environment and Java programing language. The teacher discusses various terms: operator,
operand, operator precedence.Additional examples may include defining local variables to
check if an entity's x-position is equal to its y-position, using a boolean operator to
determine if the entity is on a diagonal.

4. Relational operators

Objective: Understanding the concept of relational operators, relate them to real-life
scenarios, and learn about various relational operators.

Concepts to Discuss: Variables, Data types, Operators, Real-world examples of operators.

Activity:Teacher can explain operators already known from other courses (e.g., math and
math relational operators),These operators are considered in the context of the Greenfoot
Environment and Java programing language. Teacher discusses various terms: operator,
operand, operator precedence.Additional examples may include defining local variables to
check if one entity's y-position is below another's, using relational operators to determine
positional relationships between entities.

5. Boolean expressions

Objective: Understanding the concept of boolean expressions, relate them to real-life
scenarios, and learn about various boolean expressions.

Concepts to Discuss: Variables, Data types, Operators, Real-world examples of boolean
expressions.

Activity:The teacher can explain Boolean expressions in the context of previously
presented operators. These expressions are considered in the context of the Greenfoot
Environment and Java programing language. Teacher discusses operator, operand, and
operator precedence in the context of boolean expressions.Additional examples may be
considered. For example, boolean expressions can be used to verify that entity’s position is
inside defined arena’s dimension of the game.

6. Object expression

Objective: Understanding the concept of object expressions, relate them to real-life
scenarios, and learn about various object expressions.

Concepts to Discuss: Variables, Data types, Operators, Real-world examples of object
expressions.

Activity:Teacher can explain object expression in the context of object-oriented design.
These expressions are considered in the context of the Greenfoot Environment and Java
programming language. The teacher discusses operator, operand, operator precedence,

and class casting in the context of object expressions.Additional examples can be explored.
For instance, comparing references of two object entities to check if they overlap.

7. Reference variable

Objective: Understanding the concept of reference variables, relate them to real-life
scenarios, and apply them in game development.

Concepts to Discuss: Variables, Data types, Operators, Real-world examples of reference
variables.

Activity:Teacher can explain reference variables in the context of object-oriented design.
These reference variables are considered in the context of the Greenfoot Environment and
Java programing language.The teachershould explain null reference value.

8. Task - Turn in direction

Objective: Understanding the concept of variables, data types, operators, expressions, and
utilize them in the game development.

Concepts to Discuss:Variables, Data types, Operators, Expressions.

Activity:Teacher should discuss Enemy's act() method. Teacher explains how to use local
variables in the code, for example to use “rotation” variable. Teacher should describe
difference between this.rotation and rotation. Teacher should describe
getOneIntersectingObject(_cls_) method behavior. It is used and instance is stored in
proper local variable (class casting is required). If there is no intersection object it returns
null value. Based on the performed boolean evaluation, an appropriate acting is performed
(i.e., rotating or turning). The results are discussed by the teacher and peers.

Commit: 97dddc4beba40ac785c7413bb245ba849cd956d2.

Solution: Implementation of act() method in the Enemy class.

Figure 15. Task - Turn in direction - 1

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/97dddc4beba40ac785c7413bb245ba849cd956d2

Figure 16. Task - Turn in direction - 2

6.2. Introduction to Constructors in the Greenfoot Environment

Title Introduction to Constructors in the Greenfoot Environment

Learning
objectives

By the end of this session, students will be able to understand the concept of
constructors. The session introduces basic theoretical concepts related to
constructors, as well as various code explanations and tasks. The examined
concepts will be discussed in the context of the game development, encouraging
creativity, teamwork, and an enthusiastic approach to coding in the Greenfoot
environment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge and basic object-oriented knowledge. Students should be introduced
to Greenfoot.

Scenario
duration

1) Basic concepts of constructors (10 minutes)
2) Code explanation (20 minutes)
3) Task: Rename class MyWord to Arena (5 minutes)
4) Task: Create layout of Arena (30 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 65-minute learning session, secondary school students are
introduced to concepts related to constructors within the context of game
development using the Greenfoot tool. The session starts with a 10-minute
introduction by the teacher, providing basic theoretical concepts of constructors.

This is followed by a 20-minute scenario, during which various code examples in
the Greenfoot environment are practically explained and discussed.

The next 5-minute session is related to task. Previously defined class MyWorld
should be renamed. In this context, new name should be defined, i.e. class name
should be Arena. It is important to note that constructor of the class should also
be renamed.

Finally, this is followed by a 30-minute teacher-guided session, during which
students solve task related to layout of Arena. The feedback provided by the
teacher and peers is included in this session.

The students will continue working on the game project initiated in the previous
sessions. Consequently, by the end of the session, they will be introduced to
concepts related to constructors.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

The state of the project opens possibilities for home assignments. In this context,
more classes, expressions and values can be introduced to achieve additional
behavior (e.g. teleports, tunnels, etc.).Theseconcepts can be discussed with
students and the respective implementation can be assigned as homework.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

6.2.1. A teacher's Guide to Lesson Preparation

1. Basic concepts of constructors

Objective: Understanding the concept of constructors.

Concepts to Discuss: Constructors, Classes, Objects, Keywords: super,new, this.

Activity: The teacher introduces the term constructor within the context of Class and
Object concepts in Object-Oriented Programming (OOP). Constructors are used to initialize
a concrete instance (i.e., an object) of a class.

2. Code explanation

Objective: Understanding the concept of constructors, relate them to real-life scenarios.

Concepts to Discuss: Constructors, Classes, Objects, Methods, Parameters, Keywords:
super,new, this, Real-world examples of constructors.

Activity: The teacher should discuss constructors within the context of Class and Object
OOP concepts: constructors are used to initialize concrete instances of a class. In addition,
constructors are always invoked and can be defined either implicitly or explicitly. There are
default constructors (which are implicitly defined) as well as parameterized and non-
parameterized constructors (which are explicitly defined by a programmer). The
differences between parameterized and non-parameterized constructors should also be
discussed. To make this concept more relatable to students, the teacher should use real-life
examples.

3. Task: Rename class MyWord to Arena

Objective: Renaming the MyWorld class.

Concepts to Discuss: Constructors, Classes, Objects.

Activity: The previously defined class MyWorld should be renamed. In this context, a new
name should be chosen, specifically Arena. Additionally, the constructor of the class should
also be renamed from MyWorld() to Arena().

Commit: aaf73c9bfd9f76a2a1e504f5e78d2976f1cada12

Solution: MyWorld class was renamed to Arena class. Constructor of the class is also renamed

from MyWorld() to Arena().

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/aaf73c9bfd9f76a2a1e504f5e78d2976f1cada12

Figure 17. Rename class MyWord to Arena

 Task: Create layout of Arena

Objective: Understanding the concept of constructors and relate them to the game
scenario.

Concepts to Discuss: Constructors, Classes, Objects, Methods, Parameters, Keywords:
super,new, this.

Activity: In this activity, a custom layout for Arena should be created. The custom layout

should be provided within the constructor of the Arena class: one instance of Enemy, one

instance of Orb, and at least one instance of Direction should be added. After declaring and

initializing the variables, properties should be assigned by invoking the appropriate

methods. Finally, these objects should be incorporated into the arena by invoking the

addObject(Actor) method.

Commit: 8b105ea2eaf697f08c321efe687ddd31e2d0a041

Solution: Custom layout for Arena is created within the constructor of the Arena class.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/8b105ea2eaf697f08c321efe687ddd31e2d0a041

Figure 18. Create layout of Arena

6.3. Introduction to Attributes in the Greenfoot Environment

Title Introduction to Attributes in the Greenfoot Environment

Learning
objectives

By the end of this session, students will be able to understand the concept of
attributes. The session introduces basic theoretical concepts related to
attributes, as well as various code explanations and tasks. The examined
concepts will be discussed in the context of the game development, encouraging
creativity, teamwork, and an enthusiastic approach to coding in the Greenfoot
environment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge and basic object-oriented knowledge. Students should be introduced
to Greenfoot.

Scenario
duration

1) Task: Movement-related problem and solution (30 minutes)
2) Attributes (10 minutes)
3) Parameters of constructors (10 minutes)
4) Task: Enemy.moveDelay (20 minutes)
5) Task: Movement of enemies respecting delay (30 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 100-minute learning session, secondary school students are
introduced to concepts related to attributes within the context of game
development using the Greenfoot tool. The session starts with a 30-minute task
related to movement-related problems and potential solutions.

Based on the previous task, concepts related to attributes are introduced in the
next 10-minute session. This is followed by a 10-minute scenario, during which
parameters of constructors are explained and discussed.

The next 20-minute teacher-guided session is related to task. New attribute
related to movement in Enemy class is defined. In addition, the parametric
constructor is defined. The feedback provided by the teacher and peers is
included in this session.

Finally, in the last 30-minute teacher-guided session movement of enemies is
implemented. In this context, the act() method is updated. The feedback
provided by the teacher and peers is included in this session.

The students will continue working on the game project initiated in the previous
sessions. Consequently, by the end of the session, they will be introduced to
concepts related to attributes.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

The state of the project opens possibilities for home assignments. In this context,
more classes, expressions and values can be introduced to achieve additional
behavior (e.g. teleports, tunnels, etc.).These concepts can be discussed with
students and the respective implementation can be assigned as homework.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

6.3.1. A teacher's Guide to Lesson Preparation

1. Task: Movement-related problem and solution

Objective: Understanding the movement-related problem and potential solutions in the
context of constructors and attributes.

Concepts to Discuss: Constructors, Attributes, Methods.

Activity: The teacher should explain that the Enemy is currently moving two cells at once,
which causes issues with its movement. To address this, the speed of the Enemy can be
modeled differently. The Enemy instance will now always move one cell at a time.
Additionally, a new attribute called moveDelay can be defined, which will cause the Enemy
instance to move only after a certain number of act() method calls have passed.

2. Attributes

Objective: Understanding the concept of attributes.

Concepts to Discuss: Constructors, Classes, Objects, Attributes.

Activity: The teacher introduces the concept of attributes within the context of Class and
Object concepts in Object-Oriented Programming (OOP).

3. Parameters of constructors

Objective: Understanding the concept of parameters of the constructor.

Concepts to Discuss: Constructors, Classes, Objects, Attributes, Parameters, Keywords:
super,new, this.

Activity: The teacher introduces the concept of parameters of the constructor in context of
Class and Object concepts in Object-Oriented Programming (OOP).

4. Task: Enemy.moveDelay

Objective: Understanding the concept of attributes and parameters of the constructor.

Concepts to Discuss: Constructors, Classes, Objects, Attributes, Parameters, Keywords:
super,new, this.

Activity: A new attribute named moveDelay of type int will be added to the Enemy class. A
parameterized constructor will also be defined to initialize this attribute, with the attribute
being set to the value provided by the parameter. The code in the Arena class will be
adjusted accordingly.

Commit: 6092489ce57541e77ae4e2ee886b20853df9f8a4.

Solution: A new attribute moveDelay and parameterized constructor are added in the

Enemy class.

Figure 19. Enemy.moveDelay

5. Task: Movement of enemies respecting delay

Objective: Understanding the concept of attributes and parameters of the constructor.

Concepts to Discuss: Constructors, Classes, Objects, Attributes, Parameters, Keywords:
super,new, this.

Activity: The act() method of the Enemy class will be updated so that the Enemy moves
only after the specified number of moveDelay calls of the method. Additionally, a new
attribute called nextMoveCounter of type int will be introduced and initialized to 0. The
act() method will be modified to call this.move(1) only when nextMoveCounter reaches 0.
After the movement, nextMoveCounter will be reset to the value of moveDelay. If the
Enemy instance cannot move because nextMoveCounter has not yet reached 0,
nextMoveCounter will be decreased by 1.

Commit: bf26e6ed23911ccb712fae3e243cdedff3a89a7f.

Solution: A new attribute nextMoveCounter was added and initialized in the constructor.

Implementation of act() method was updated so that the Enemy moves only after the

specified number of moveDelay calls of the method.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/6092489ce57541e77ae4e2ee886b20853df9f8a4
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/bf26e6ed23911ccb712fae3e243cdedff3a89a7f

Figure 20- Movement of enemies respecting delay - 1

Figure 21 Movement of enemies respecting delay - 2

6.4. Introduction to Constructor Overloading in the Greenfoot Environment

Title Introduction to Constructor Overloading in the Greenfoot Environment

Learning
objectives

By the end of this session, students will be able to understand the concept of
constructor overloading. The session introduces basic theoretical concepts
related to constructor overloading, as well as various code explanations and
tasks. The examined concepts will be discussed in the context of the game
development, encouraging creativity, teamwork, and an enthusiastic approach
to coding in the Greenfoot environment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge and basic object-oriented knowledge. Students should be introduced
to Greenfoot.

Scenario
duration

1) Basic concepts of constructor overloading (5 minutes)
2) Task: Parametric constructor of class Direction (25 minutes)
3) Task: Overload constructors in class Direction (25 minutes)
4) Theory revision (20 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 75-minute learning session, secondary school students are
introduced to concepts related to constructor overloading within the context of
game development using the Greenfoot tool. The session starts with a 5-minute
introduction to basic concepts of constructor overloading.

The next 25-minute teacher-guided session is related to task in which parametric
constructor in the class Direction is defined. In the next 25-minute task
overloaded constructor in the class Direction is defined. The feedback provided
by the teacher and peers is included in this sessions.

Finally, in the last 20-minute teacher-guided session theory revision related to
previously discussed concepts is performed (i.e., variables, expressions,
operators, constructors, attributes, and constructors overloading).

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

The state of the project opens possibilities for home assignments. In this context,
more classes, expressions and values can be introduced to achieve additional
behavior (e.g. teleports, tunnels, etc.).These concepts can be discussed with
students and the respective implementation can be assigned as homework.

Result In order to disseminate their results to teachers and fellow students the usual

dissemination setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

6.4.1. A teacher's Guide to Lesson Preparation

1. Basic concepts of constructor overloading

Objective: Understanding the concepts of constructors overloading.

Concepts to Discuss: Constructors.

Activity: The concepts of constructors overloading are discussed.

2. Task: Parametric constructor of class Direction

Objective: Definition of parametric constructor of Direction class in the context of game
development.

Concepts to Discuss: Constructors, Parameters, Attributes, Parametric Constructors.

Activity: In this session, a parameterized constructor is defined for the Direction class with
a single parameter, rotation, of type int. Within the constructor body, the created instance
should be rotated based on the value of this parameter. The code in the Arena class should
be updated accordingly.

Commit: 3c4b9ef57ab17bac2a0abc7fc5e76ea4b6e27e4b.

Solution: Parameterized constructor in Direction class was defined. The code in the Arena

class was updated accordingly.

Figure 22. Parametric constructor of class Direction - 1

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/3c4b9ef57ab17bac2a0abc7fc5e76ea4b6e27e4b

Figure 23. Parametric constructor of class Direction - 2

3. Task: Overload constructors in class Direction

Objective: Definition of overload constructor of Direction class in the context of game
development.

Concepts to Discuss: Constructors, Constructors Overload.

Activity: In this session an overloaded constructor is defined in the Direction class. A non-
parameterized constructor is added, and within its body, the parameterized constructor is
invoked with the argument rotation set to 0. The code in the Arena class should be updated
accordingly, using the non-parameterized version of the Direction class constructor where
possible.

Commit: 1e67e67523c66acea4e93363c9a3173302f424c8.

Solution: Overloaded constructor in Direction class was defined. The code in the Arena

class was updated accordingly.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/1e67e67523c66acea4e93363c9a3173302f424c8

Figure 24. Task Overload constructors in class Direction - 1

Figure 25. Task Overload constructors in class Direction - 2

4. Theory revision

Objective: Theory revision related to previously discussed concepts.

Concepts to Discuss: Variables, Expressions, Operators, Constructors, Attributes,
Constructors Overloading.

Activity: A review of the previously discussed concepts was conducted during this session.

7. Association

Four teaching scenarios have been created within the Variable and expressions thematic

unit.

7.0. Greenfoot Objects on a Mission: Exploring Methods and Associations

Title Greenfoot Objects on a Mission: Exploring Methods and Associations

Learning
objectives

By the end of the scenario, students should have a solid understanding of how
objects can interact with each other. An instance of the class Enemy interacts
with other objects, particularly the class Orb, within the Greenfoot environment.
They should demonstrateproficiency in creating and invoking methods within
Java classes, specifically implementing and testing the methods
Arena.respawn(Enemy) and Orb.hit(Enemy). Additionally, students should
comprehend and manage class attributes effectively, including defining and
utilizing the attributes Enemy.attack and Orb.hp.Students should be proficient in
encapsulating data within a class, demonstrated by creating getters such as
getEnemy.attack(), and understand the importance of data encapsulation for
secure and maintainable code. They should understand and implement message
passing between objects, ensuring that instances of classes communicate
effectively to perform game actions. Furthermore, students should apply method
calling techniques to solve interactive game development tasks, effectively
utilizing syntax and parameters required for method invocation.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including iteration and selection concepts. Students should be
introduced to Greenfoot.

Scenario
duration

1) Task 5.1 - Discuss what should happen when enemy reaches orb(10
minutes)

2) Task 5.2 - Discuss how instance of class Enemy should interact with the
relevant objects using messages when hitting instance of class Orb (15
minutes)

3) Task 5.3 - Attribute Enemy.attack and Orb.hp (10 minutes)
4) Method (15 minutes)
5) Task 5.4 - Getter of attribute Enemy.attack (5 minutes)
6) Task 5.5 - Create and test method Arena.respawn(Enemy) (10 minutes)
7) Task 5.6 - Create and test method Orb.hit(Enemy) (10 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 75-minute learning scenario, secondary school students will dive into the
object interactions, method creation, and attribute handling within the
Greenfoot environment. This session aims to enhance students' understanding of
how objects communicate and interact, a crucial aspect of object-oriented
programming.

The session begins with a 10-minute discussion on the dynamics between enemy
objects and orbs, exploring what should happen when an enemy reaches an orb.
This will set the stage for understanding object interactions in a game context.

Following this, students will engage in a 15-minute task discussing how an
instance of the class Enemy should interact with relevant objects using messages
when it collides with an instance of the class Orb. This discussion will emphasize
the importance of object communication and message passing.

Next, a 10-minute task will focus on the attributes Enemy.attack and Orb.hp.
Students will define and understand these attributes, crucial for managing the
game's mechanics.

In the subsequent 15 minutes, students will jump into methods, learning how to
create and implement them within their classes. This section will solidify their
understanding of method creation and invocation.

In 5-minute task students will have to create a getter for the attribute
Enemy.attack, reinforcing their knowledge of encapsulation and data retrieval.

The next 10 minutes will be dedicated to creating and testing the method
Arena.respawn(Enemy). Students will implement this method to handle the
respawn logic for enemy objects, ensuring their understanding of method
functionality and testing.

Following this, another 10-minute task will involve creating and testing the
method Orb.hit(Enemy), which will handle the interaction logic when an enemy
hits an orb.

Throughout the session, students will work individually or in small groups,
promoting collaboration and peer learning. By actively participating in
discussions, coding tasks, and testing methods, students will develop critical
thinking skills and computational problem-solving abilities.

At the conclusion of the session, students will emerge with a comprehensive

understanding of object interactions, method creation, and attribute
management in Greenfoot. These essential skills will equip them for further
game development projects and enhance their overall programming proficiency.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

7.0.1. A Teacher's Guide to Lesson Preparation

1) Task 5.1 - Discuss What Should Happen When Enemy Reaches Orb (10 minutes)

Objective: The teacher facilitates a discussion about the expected behavior when an enemy

reaches the orb. Students are encouraged to think about the game dynamics and

outcomes, such as the orb taking damage or the game ending.

Concepts to Discuss: Damage to the orb, enemy removal, triggering game events (e.g.,

reducing health, playing sound effects, ending the game).

Activity: The lesson begins with a review of previously covered concepts to ensure students

have a solid foundation for the new material. The teacher engages students in a discussion

to clarify the concepts of object interaction, messages, and methods within the context of

the Greenfoot environment.

Students collaborate in groups to brainstorm the outcomes when an enemy reaches the

orb in their game. They explore algorithms such as reducing the orb's health points (HP)

upon enemy contact, discussing scenarios where the orb's HP might drop to zero, resulting

in the game ending. Alternatively, if the orb's HP remains above zero, they agree to

respawn the enemy in a different arena location. They also consider integrating additional

game events triggered by this interaction, such as sound effects or on-screen messages.

Throughout the session, the teacher guides the discussion, prompting students to align

their proposed algorithms with a specific scenario: ensuring that when an enemy reaches

the orb, the orb's HP decreases as previously outlined. This guidance helps students apply

their ideas practically, reinforcing their understanding of game dynamics and interactions

within their game's framework.

2) Task 5.2 - Discuss How Instance of Class Enemy Should Interact with Relevant Objects

Using Messages When Hitting Instance of Class Orb (15 minutes)

Objective: The teacher guides students through the process of understanding how an

instance of the Enemy class should interact with other objects, specifically when it hits an

instance of the Orb class, using messages.

Concepts to Discuss: Method calling, parameter passing, object references.

Activity:Students collaborate in pairs to explore how an instance of the Enemy class should

interact with an instance of the Orb class using messages within their game scenario. They

analyze and map out the sequence of messages and actions that should unfold when an

enemy hits the orb. This exercise aims to deepen their understanding of method calling,

parameter passing, and object references in the context of game development. As students

discuss and refine their ideas, the teacher facilitates the session, guiding them to ensure

that the sequence of interactions among the objects follows the algorithm spread across

cooperating objects, as specified in the lesson's objectives. To aid in this process, the

teacher can introduce and utilize a UML sequence diagram to visually describe the

interactions among the Enemy, Orb, Arena, and Greenfoot classes. This visual tool helps

students better comprehend the flow of messages and method calls, reinforcing their

understanding of object-oriented programming concepts and their application in Java

programming within the Greenfoot environment.

3) Task 5.3 - Attribute Enemy.attack and Orb.hp (10 minutes)

Objective: The teacher introduces the attributes Enemy.attack and Orb.hp, explaining their

significance in determining the outcome of interactions.

Concepts to Discuss: Class attributes, encapsulation.

Activity:The teacher introduces the concept of class attributes and encapsulation,

explaining how attributes like Enemy.attack and Orb.hp can represent essential

characteristics of objects within the game. Students learn to define and use these

attributes in their code to model the enemy's attack power and the orb's health points.

They start by adding a new integer attribute called attack to the Enemy class, including a

parameter in the constructor to initialize this attribute. Similarly, they add an integer

attribute called hp to the Orb class, along with a parametric constructor to set this value

upon object creation. The teacher guides students through adjusting the code in the Arena

class to accommodate these new attributes. This hands-on experience helps students

understand the role of class attributes in object interactions and the importance of

encapsulation in maintaining code integrity and security.

Commit: 4ca1e9f25685990d2bdfe5b610c28422e0944f95

Solution:The solution requires changes to three classes: Enemy, Orb and Arena.

For start, it is necessary to modify the Enemy class by defining a new attribute and

initializing it using a parameter in the constructor.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4ca1e9f25685990d2bdfe5b610c28422e0944f95

Figure 26. Task 5.3 - 1

A similar modification needs to be made in the Orb class.

Figure 27. Task 5.3 - 2

Finally, it is necessary to modify the Arena class to use the constructors appropriately and

initialize the attribute values.

Figure 28. Task 5.3 - 3

4) Method (15 minutes)

Objective: The teacher provides an overview of methods, explaining how they are used to

encapsulate actions and behaviors within classes.

Concepts to Discuss: Method definition, method invocation, parameters, return values.

Activity:The teacher begins by explaining the concept of methods as encapsulated actions

or behaviors within a class. Using practical examples, the teacher demonstrates the syntax

and structure of method definitions, illustrating how methods are invoked on objects.

Students learn about different types of methods, including those that perform actions (void

methods) and those that return values (return type methods). The teacher explains how

parameters are passed to methods, highlighting the importance of parameter types and

order. Through guided coding exercises, students practice defining methods with various

parameter and return types, and invoking these methods on object instances. They explore

scenarios where methods perform actions, modify object states, or return specific values,

solidifying their understanding of method functionality within a class.

5) Task 5.4 - Getter of Attribute Enemy.attack (5 minutes)

Objective: The teacher explains the concept of getter methods and their purpose in

accessing attribute values.

Concepts to Discuss: Accessor methods (getters), encapsulation.

Activity: The teacher begins by explaining the purpose of getter methods, emphasizing how

they provide controlled access to attribute values while maintaining encapsulation.

Students learn the importance of using getters to retrieve private attribute values,

reinforcing the concept of data protection within a class. The teacher then guides students

through the process of creating a getter method for the attack attribute in the Enemy class.

Using a hands-on approach, students implement the getter method, ensuring it returns the

value of the attack attribute. The teacher demonstrates the correct syntax and structure for

defining a getter, and how it is used within the code to access the attribute value. By the

end of the activity, students should be able to create and utilize getter methods to access

attribute values in a controlled manner, enhancing their understanding of encapsulation

and data protection in object-oriented programming.

Commit: 72b7456ea4cc11416c57d72c89b6a7f7e9266e3e

Solution:The solution requires changes to the class Enemy.

In the Enemy class, a getter method for the attack attribute should be added.

Figure 29. Task 5.4

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/72b7456ea4cc11416c57d72c89b6a7f7e9266e3e

6) Task 5.5 - Create and Test Method Arena.respawn(Enemy) (10 minutes)

Objective: The teacher guides students through the creation and testing of the

Arena.respawn(Enemy) method, which handles respawning enemies in the game.

Concepts to Discuss: Method implementation, testing, game mechanics.

Activity:The teacher begins by introducing the concept of method implementation and its

importance in defining specific behaviors within a class. Emphasizing practical application,

students are guided to create the respawn method in the Arena class. This method, which

does not return a value, takes a single parameter of type Enemy. Students are instructed to

set the location and rotation of the enemy within this method to match the values initially

set in the constructor. The teacher demonstrates the correct syntax and structure for

defining this method, reinforcing key concepts of method implementation and parameter

passing.

Next, students test their method to ensure it functions correctly. They create an instance of

the Arena and an Enemy but do not launch the application immediately. Instead, they drag

the Enemy instance to a new location, then access the context menu of the Arena instance

to invoke the respawn method. The teacher explains the process of ensuring the

application is paused and the parameter field is active, guiding students to right-click on the

Enemy instance to fill the parameter field correctly. Students observe the expression built

in the window and then click the OK button to see the effect of their respawn method.

Through this activity, students gain practical experience in writing and testing methods,

understanding how to manipulate game objects programmatically. The teacher ensures

that students comprehend each step, providing assistance and clarification as needed,

thereby reinforcing their understanding of method implementation and game mechanics.

Commit: 43a221876b8acb4fd507175ec4c8f520121d1ab1

Solution:The solution requires changes to the class Arena.

In the Arena class, a respawn() method should be defined.

Figure 30. Task 5.5

7) Task 5.6 - Create and Test Method Orb.hit(Enemy) (10 minutes)

Objective: The teacher instructs students on creating and testing the Orb.hit(Enemy)

method, which defines the interaction when an enemy hits the orb.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/43a221876b8acb4fd507175ec4c8f520121d1ab1

Concepts to Discuss: Method interaction, updating object state.

Activity:The teacher begins by explaining the purpose of the Orb.hit(Enemy) method,

emphasizing how it encapsulates the interaction logic between the orb and an enemy.

Students are then guided to add this method to the Orb class. This method, which does not

return a value, takes a single parameter of type Enemy.

To test the method, students follow a step-by-step process similar to the one used for

testing the respawn method. They create an instance of the Orb class and an instance of

the Enemy class. Without launching the application, they invoke the context menu of the

Orb instance and select the hit method. The teacher ensures students understand how to

fill the parameter field by right-clicking on the Enemy instance while the application is

paused. This action builds the method call expression, which students then execute by

clicking the OK button.

The teacher emphasizes the importance of observing the expression built in the window to

verify the method call. This exercise helps students understand method interaction and the

process of updating object states within a game context. Through this hands-on activity,

students gain practical experience in implementing and testing methods, reinforcing their

comprehension of method interaction and game behavior. The teacher provides support

and clarification as needed, ensuring students successfully complete the task and

understand its significance.

Commit: fe03d520260f172066be35055a901487bf7c2ff7

Solution:The solution requires changes to the class Orb.

In the Orb class, a hit() method should be defined.

Figure 31. Task 5.6

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/fe03d520260f172066be35055a901487bf7c2ff7

7.1. Greenfoot Objects on a Mission: Exploring Associations and Advanced Method

Calls

Title Greenfoot Objects on a Mission: Exploring Associations and Advanced Method
Calls

Learning
objectives

By the end of the scenario, students should develop a deep understanding of
how objects in different classes can form associations and interact effectively
within the Greenfoot environment. Students should demonstrate proficiency in
calling the Orb.hit(Enemy) method from the Enemy class, showcasing their ability
to initiate advanced method calls and facilitate communication between objects.
They should be able to explain the functionality of key Greenfoot methods such
as Greenfoot.stop() and World.getWorldOfType(_cls_), understanding their roles
in controlling game execution and managing object instances effectively, and
also, students should successfully implement the Orb.hit(Enemy) method within
their projects, integrating object interactions and method functionalities to
create interactive and dynamic game mechanics.

Students should apply fundamental principles of object-oriented programming,
including encapsulation and method invocation, to develop sophisticated game
interactions and functionalities. They should gain practical insights into various
aspects of game development, including enemy spawning, game state
management, and the creation of engaging player experiences through
structured object interactions.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including iteration and selection concepts. Students should be
introduced to Greenfoot.

Scenario
duration

1) Association (10 minutes)
2) Task 5.7 - Call method Orb.hit(Enemy) from Enemy (15 minutes)
3) Explanation of the code for methods Greenfoot.stop() and

World.getWorldOfType(_cls_) (15 minutes)
4) Task 5.8 - Implement method Orb.hit(Enemy)(30 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 70-minute learning scenario, secondary school students will delve into the
details of associations between objects and advanced method calls within the
Greenfoot environment. The session aims to deepen students' understanding of
object-oriented programming concepts and enhance their ability to implement
complex interactions in game development.

The session begins with a 10-minute discussion on associations between classes,
focusing on how objects can interact and collaborate within a software system.
This foundational understanding sets the stage for exploring more complex
interactions.

Following this, students will engage in a 15-minute task aimed at calling the
method Orb.hit(Enemy) from the Enemy class. This task emphasizes the practical
application of method invocation and message passing between objects.

The next segment involves a detailed explanation of the code for methods
Greenfoot.stop() and World.getWorldOfType(_cls_), taking 15 minutes. Students
will gain insights into how these methods function within the Greenfoot
framework, enabling precise control over game elements and world
management.

The core of the session is dedicated to a 30-minute task where students will
implement the method Orb.hit(Enemy). This task challenges students to apply
their understanding of method implementation, parameter passing, and object
interactions to create a functional game mechanic within their projects.

At the conclusion of the scenario, students will emerge with a deeper
understanding of associations between objects, proficiency in advanced method
calls like Orb.hit(Enemy) from the Enemy class, and insights into the
implementation of crucial Greenfoot methods. These skills will equip them to
create more interactive and dynamic games, leveraging the full potential of
object-oriented programming principles in game development.

Assessment The gamification represents non-formal assessment but will increase the interest,
intrinsic motivation and learning outputs of the whole group.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

7.1.1. A Teacher's Guide to Lesson Preparation

1) Association (10 minutes)

Objective: The teacher explains the concept of association between objects, emphasizing

how objects of different classes can interact with each other.

Concepts to Discuss: Associations, object interactions, class relationships.

Activity: The lesson begins with a brief review of associations between classes in object-

oriented programming. The teacher engages students in a discussion to clarify how objects

interact with each other through associations, using practical examples from the Greenfoot

environment to illustrate these concepts. Students delve into understanding that

associations define how classes collaborate, such as how an Enemy can affect an Orb in a

game scenario.

Through a detailed discussion, the teacher elaborates on the different types of associations

within Greenfoot: one-to-one, one-to-many, and many-to-many. For instance, a one-to-one

association might illustrate how a Player is linked to their Character avatar, a one-to-many

association could show how a World contains multiple Actor instances, and a many-to-

many association might depict how various Enemies interact with multiple Orbs in a game

level.

Using UML class diagrams specific to Greenfoot, the teacher visually demonstrates these

relationships, aiding students in understanding how associations are structured and

implemented in their game projects. For example, the diagram could depict how an Enemy

class is associated with multiple instances of the Orb class, indicating a one-to-many

relationship where each Enemy affects several Orbs.

Students actively participate in identifying and mapping out these associations within their

game projects. They explore how objects interact based on these relationships and discuss

the implications for game mechanics and logic. The teacher provides concrete examples

from their game development context, illustrating how Enemy instances interact with Orb

instances and how these interactions are governed by associations.

By the end of the activity, students gain a solid grasp of the role associations play in

designing and implementing interactive systems within Greenfoot. They can identify

different types of associations and apply this knowledge to model and implement complex

interactions between Greenfoot objects effectively. This practical understanding

strengthens their ability to design cohesive and interactive game scenarios using object-

oriented principles.

2) Task 5.7 - Call Method Orb.hit(Enemy) from Enemy (15 minutes)

Objective: The teacher guides students through the process of calling the Orb.hit(Enemy)

method from within the Enemy class.

Concepts to Discuss: Method invocation, object references.

Activity:Students engage in hands-on learning by altering the act() method of the Enemy

class. They remove existing code responsible for unnecessary behaviors like rotating upon

hitting the orb or bouncing off the world's edges. Instead, they implement the functionality

to call the Orb.hit(Enemy) method when an instance of Enemy collides with an instance of

Orb.

Through practical examples and demonstrations, the teacher illustrates how to set up the

method call correctly. Students learn to use object references (this) to trigger the hit()

method on the Orb instance upon collision with an Enemy. They explore the flow of control

in Greenfoot, understanding how method invocation directs the execution path within

their game scenario.

Throughout the activity, the teacher provides guidance on debugging and testing the

implementation to ensure that calling Orb.hit(Enemy) functions as intended. Students

observe the behavior in the Greenfoot simulation environment, validating that the method

call effectively triggers the expected interactions between Enemy and Orb objects.

By the end of the lesson unit, students gain proficiency in method invocation and object

interaction within Greenfoot programming. They comprehend how to utilize object

references to invoke methods across different classes, reinforcing their understanding of

object-oriented programming principles in a game development context.

Commit: 63f9c96717d9d2587b60095e3b249b0158c8587b

Solution:The solution requires changes to the class Enemy.

In the act() method of the Enemy class, the method hit() should be called.

Figure 32. Task 5.7

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/63f9c96717d9d2587b60095e3b249b0158c8587b

3) Explanation of the Code for Methods Greenfoot.stop() and World.getWorldOfType(cls)

(15 minutes)

Objective: The teacher explains the functionality of the Greenfoot.stop() method and the

World.getWorldOfType(_cls_) method.

Concepts to Discuss: Game control methods, world management.

Activity:In this lesson unit, students delve into understanding two crucial methods within

the Greenfoot framework: Greenfoot.stop() and World.getWorldOfType(_cls_). The

teacher begins by elucidating the purpose and usage of each method, emphasizing their

roles in game control and world management.

The Greenfoot.stop() method is essential for controlling the execution flow of a Greenfoot

scenario. When invoked, it halts the simulation and freezes all actors and interactions

within the world. This method is particularly useful for implementing game pause

functionality or triggering specific events that require stopping the game's progression

temporarily.

On the other hand, the World.getWorldOfType(_cls_) method serves a different purpose

related to world management. This method allows developers to retrieve instances of

worlds that are of a specific class type (_cls_). It traverses through all active worlds in the

Greenfoot environment and returns instances of the world class that match the specified

type. This capability is beneficial when developers need to interact with or manipulate

worlds dynamically based on their class attributes.

Students engage in practical demonstrations and examples to deepen their understanding

of these methods. The teacher showcases how Greenfoot.stop() can be integrated into

game scenarios to create pause functionality or trigger specific in-game events. Students

observe how pausing the game affects actor behaviors and interactions within the

Greenfoot simulation environment.

Similarly, students explore the World.getWorldOfType(_cls_) method through hands-on

exercises. They learn how to use this method to retrieve instances of specific world types

dynamically. The teacher demonstrates scenarios where fetching worlds of a particular

class type is necessary for implementing advanced game mechanics or managing multiple

concurrent game environments within Greenfoot.

Throughout the activity, the teacher encourages discussion and provides practical coding

examples to illustrate the applications of these methods in real-world game development

scenarios. Students actively participate in experimenting with the methods within their

own Greenfoot projects, reinforcing their comprehension through direct application and

exploration.

By the end of the lesson unit, students gain proficiency in utilizing Greenfoot.stop() for

game control and World.getWorldOfType(_cls_) for efficient world management within the

Greenfoot environment. They acquire practical skills that enhance their ability to

implement complex game behaviors and manage game states effectively using these

essential methods.

4) Task 5.8 - Implement Method Orb.hit(Enemy) (30 minutes)

Objective: The teacher guides students through the implementation of the Orb.hit(Enemy)

method.

Concepts to Discuss: Method implementation, updating object state, game mechanics.

Activity: Students starts implementing the Orb.hit(Enemy) method, a crucial step in

defining the interaction between an enemy and the orb within their game scenario.

The Orb.hit(Enemy) method plays a pivotal role in determining the consequences when an

enemy collides with the orb in the game. Here’s how students can approach and

implement this method. First, decrease Orb's Health Points. Upon calling Orb.hit(Enemy),

the method should reduce the orb's health points (hp). This action simulates damage taken

by the orb upon impact with an enemy. After that, check if the orb's health points have

dropped to zero. If the orb's health points (hp) reach zero or below, the game should end.

This is achieved by invoking Greenfoot.stop() to halt the game's execution. That is the game

over scenario. Different scenario happens if the orb's health points are still above zero after

the enemy collision, students should incorporate logic to respawn the enemy back into the

arena for continuous gameplay.

During the activity, the teacher facilitates the implementation of Orb.hit(Enemy) by

providing guidance on method structure, parameter usage (Enemy), and how to update the

orb's state (hp). Students collaborate to discuss and decide on the specific game mechanics

they want to implement, such as how much damage each enemy type inflicts on the orb

and what happens when the orb's health points are depleted.

The teacher encourages students to test their implementations thoroughly, ensuring that

the method behaves as expected in various game scenarios. By the end of the activity,

students gain practical experience in implementing method logic to manage game

interactions effectively, reinforcing their understanding of method implementation and

game mechanics within the Greenfoot framework.

(Commit: 84bcd7c128faaa9313b507f7438f826ae2f47d2c)

Solution:The solution requires changes to the class Orb.

In the hit() method of the Orb class should be implemented.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/84bcd7c128faaa9313b507f7438f826ae2f47d2c

Figure 33. Task 5.8

7.2. Greenfoot Objects on a Mission: Towers, Bullets, and Strategic Interactions

Title Greenfoot Objects on a Mission: Towers, Bullets, and Strategic Interactions

Learning
objectives

By the end of the scenario, students will develop proficiency in creating the
Bullet and Tower classes, establishing a foundation for strategic game
development. They will understand and implement realistic Bullet movement
and determine actions when Bullet instances encounter Enemy instances or the
arena's edge. Students will design effective shooting mechanics for Tower
instances, utilizing message passing between Tower objects and other game
elements to enhance gameplay dynamics. They will strategically deploy Tower
instances within the game arena and apply object-oriented principles such as
encapsulation and method invocation to ensure the creation of robust and
maintainable game mechanics. Through collaborative problem-solving, students
will address challenges in designing and implementing strategic interactions
between towers, bullets, and game elements, gaining practical insights into
game design principles and enhancing their overall understanding of tower
defense mechanics in Greenfoot.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including iteration and selection concepts. Students should be
introduced to Greenfoot.

Scenario
duration

1) Task 5.9 - Create classes Bullet and Tower(10 minutes)
2) Task 5.10 - Discuss how the instance of class Bullet should move and

what should happen when it reaches instance of class Enemy or edge of
the arena. (10 minutes)

3) Task 5.11 - Implement movement of instance of class Bullet (30 minutes)
4) Task 5.12 - Discuss how the instance of class Tower will shoot instance of

class Bullet (15 minutes)
5) Task 5.13 - Discuss how instance of class Tower should interact with the

relevant objects using messages when shooting (15 minutes)
6) Task 5.14 - Implement shooting of instance of class Tower (30 minutes)
7) Task 5.15 - Towers in Arena (20 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 130-minute learning scenario, secondary school students will immerse
themselves in the dynamics of tower and bullet interactions within the
Greenfoot environment. The session focuses on developing students' skills in
designing and implementing strategic game elements to create engaging and
interactive gameplay.

The session commences with a 10-minute task where students create the Bullet
and Tower classes. This foundational step sets the groundwork for
understanding and implementing the interactions between these game
elements.

Following this, a 10-minute discussion ensues on how instances of the Bullet
class should move and the actions that should occur when a bullet reaches an
instance of the Enemy class or the edge of the arena. This discussion sets the
stage for implementing precise and dynamic movement mechanics.

Students then dedicate 30 minutes to implementing the movement of instances
of the Bullet class. This task challenges students to apply their understanding of
Greenfoot's move() method and event handling to simulate realistic bullet
behavior within the game environment.

The session continues with a 15-minute task discussing how instances of the
Tower class should shoot instances of the Bullet class. This discussion covers the
logic and conditions for initiating bullet shots from towers.

Following this, another 15 minutes are dedicated to discussing how instances of
the Tower class should interact with relevant objects using messages when
shooting. This segment emphasizes the importance of object communication and
event triggering in game development.

Students then spend 30 minutes implementing the shooting mechanism of
instances of the Tower class. This task requires students to integrate shooting
logic with object interactions, ensuring that towers effectively engage with
enemies or other game elements.

The session concludes with a 20-minute task focusing on managing and
deploying towers within the arena. This task explores the placement, interaction,
and strategic positioning of towers to optimize gameplay dynamics and
challenge players effectively.

At the end of the session, students will have gained practical experience in
designing and implementing strategic interactions between towers and bullets in
Greenfoot. They will have acquired skills in object-oriented programming, event
handling, and strategic game design, preparing them to create engaging and
dynamic games.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

7.2.1. A Teacher's Guide to Lesson Preparation

1. Task 5.9 - Create Classes Bullet and Tower (10 minutes)

Objective: The teacher guides students through the creation of the Bullet and Tower

classes.

Concepts to Discuss: Class creation, class roles, and initial setup.

Activity: The lesson starts with a review of the core concepts related to object creation,

movement, and interaction within the Greenfoot environment. The teacher engages

students in a discussion to clarify the roles of different classes and their interactions in the

game.

Students create two new classes in the Greenfoot environment, understanding the purpose

of each in the context of the game. They learn how to set up these classes, preparing for

more complex interactions in later lessons.

Students start by creating the Bullet class. This class will represent projectiles fired by the

towers. They open Greenfoot, select "New Class" from the menu, and name the new class

Bullet. Initially, they define a basic structure for the class with act() method for the bullet's

behavior.

Next, students create the Tower class. This class will represent the towers that shoot

bullets at enemies. They again select "New Class" from the menu and name the new class

Tower.

Throughout the session, the teacher explains the roles of the Bullet and Tower classes

within the game. The Bullet class represents projectiles that the towers will fire, while the

Tower class represents stationary objects that can shoot bullets at enemies. The teacher

ensures students understand the distinct roles each class plays and how they will interact in

the game.

By the end of this activity, students should have created and set up basic structures for the

Bullet and Tower classes, laying the groundwork for more detailed implementation in

future lessons.

(Commit: ece4df70042c8f60098e14ad2cee55514897d825)

Solution:The solution requires creation of two new classes:Bullet and Tower.

For start, it is necessary to create the Bullet class.

Figure 34. Task 5.9 - 1

Next, the class Tower should be created.

Figure 35. Task 5.9 - 2

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/ece4df70042c8f60098e14ad2cee55514897d825

2. Task 5.10 - Discuss How the Instance of Class Bullet Should Move and What Should

Happen When It Reaches Instance of Class Enemy or Edge of the Arena (10 minutes)

Objective: The teacher leads a discussion on the expected behavior of a bullet as it moves

in the game.

Concepts to Discuss: Movement logic, collision detection.

Activity: Students brainstorm and discuss the logic for bullet movement and collision

handling.

Students start by discussing how the Bullet instance should move within the game. They

agree that the bullet should move in a straight line in the direction it was fired, without

changing direction. The speed of the bullet should be manageable and consistent. To

implement this, they can use Greenfoot’s built-in movement methods. It is important to

highlight the role of the constructor for initializing attribute values when creating object

instances.

The teacher then guides the discussion towards what should happen when the bullet

reaches the edge of the world or collides with an enemy. The students propose that when a

bullet reaches the edge of the world, it should be removed from the game. They also

discuss that upon colliding with an enemy, the bullet should disappear, and the enemy

should take damage or be destroyed.

Students suggest the following pseudocode for the bullet's movement and collision logic:

first move the bullet forward at a constant speed, then check if the bullet has reached the

edge of the world. If true, remove the bullet from the world. If not, check if the bullet has

collided with an enemy. If there is a collision, that means that bullet hit the enemy, and we

need to remove the bullet from the world and apply damage to the enemy or remove the

enemy.

The teacher demonstrates how to implement this logic using the Greenfoot methods

move(int), isAtEdge(), and getOneIntersectingObject(Class cls).

The teacher encourages students to refine their ideas and think about additional details,

such as adjusting the speed based on game difficulty or adding visual effects when a bullet

hits an enemy. This activity helps students understand the principles of movement and

collision detection in game development, preparing them for further implementation in

their projects.

3. Task 5.11 - Implement Movement of Instance of Class Bullet (30 minutes)

Objective: The teacher helps students implement the movement logic for the Bullet class.

Concepts to Discuss: Actor movement, world boundaries.

Activity:Students write code to move the bullet forward and handle its removal when it

reaches the edge of the arena.The students start by reviewing the concepts of actor

movement and world boundaries, focusing on how these concepts apply to the Bullet class.

The teacher reminds students of previous tasks, emphasizing the knowledge they should

apply. Students recall how to add code to the act() method to handle interactions at the

edge of the world. Also, they recall how to handle directional changes when an actor enters

specific cells. Moreover, they remember how to use counters and delay mechanisms in the

act() method for controlled movement.

With these concepts in mind, students proceed to implement the movement logic for the

Bullet class. They start by adding the move(int) method in the act() method of the Bullet

class to move the bullet forward continuously.

Commit: d372827a831381b2254f838041fa4d9a42e53b82

Solution:The solution requires changes to the classBullet.

For start, it is necessary to define new attributes, and proper constructor.

Figure 36. Task 5.11 - 1

Next, the method act() should be implemented.

Figure 37. Task 5.11 - 2

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/d372827a831381b2254f838041fa4d9a42e53b82

4. Task 5.12 - Discuss How the Instance of Class Tower Will Shoot Instance of Class Bullet

(15 minutes)

Objective: The teacher discusses with students the logic for shooting bullets from the

tower.

Concepts to Discuss: Object creation, method invocation.

Activity: Students brainstorm how the tower will create and launch bullets. Students start

by discussing the overall logic needed for a tower to shoot bullets in the game. They focus

on key concepts such as creating bullet objects and invoking methods to launch them. The

teacher highlights that the tower should not shoot bullets on every call of the act() method,

similar to how enemy movement was handled with a delay mechanism.

Students brainstorm the steps required for the tower to shoot bullets intermittently. The

teacher guides them to consider using a delay mechanism for shooting. It should be

explained what the role of constructor for could be implementing this mechanism.

The teacher explains that they will need to introduce a new attribute, shootDelay, and a

counter, nextShootCounter, in the Tower class. These attributes will control the shooting

frequency.

The teacher breaks down the relevant steps and methods for the Tower class. First define

the shootDelay attribute and initialize the nextShootCounter to 0 in the Tower class. After

that, the act() method of the Tower class should be modified to handle the shooting logic.

The method should only create and shoot a bullet when nextShootCounter reaches 0. After

shooting, nextShootCounter should be reset to the value of shootDelay. If

nextShootCounter is not 0, it should be decremented by 1. At the end, separate fire()

method should be definedto handle the creation and launching of bullets. This method will

instantiate a Bullet object and add it to the world.

Through this process, students understand how to implement the shooting logic by

separating the relevant steps into methods of the Tower class. The teacher ensures that

students grasp the importance of method invocation and object creation, reinforcing their

comprehension of these concepts in the context of their game.

5. Task 5.13 - Discuss How Instance of Class Tower Should Interact with the Relevant

Objects Using Messages When Shooting (15 minutes)

Objective: The teacher explains how the tower interacts with bullets and other objects

using messages.

Concepts to Discuss: Message passing, method calls.

Activity:Students discuss the message-passing mechanism for shooting bullets.

The session begins with the teacher explaining the concept of message passing and its

significance in object-oriented programming. The teacher emphasizes how objects in the

game communicate with each other using methods, which serve as messages.

To illustrate this, the teacher uses a UML sequence diagram to describe the interactions

among the Tower, Bullet, and Arena objects. The diagram visually represents the flow of

messages and method calls, helping students understand the sequence of interactions.

Students discuss the detailed process of how the Tower class should interact with bullets

and other objects when shooting. The teacher explains that when the Tower decides to

shoot, it sends a message (method call) to create a Bullet instance and add it in Arena. This

interaction is initiated from within the act() method of the Tower class. The teacher

demonstrates using the UML sequence diagram how the Tower sends a message to the

Greenfoot framework to add a new Bullet object to the world. The Tower then sends a

message to the Bullet instance, setting its direction to match the Tower's current rotation.

This ensures that the bullet moves in the intended direction.Once the Bullet is created and

positioned, it will interact with other objects in the game, such as enemies or the edges of

the world. The teacher explains how these interactions are handled by the Bullet's act()

method, which may involve checking for collisions and removing the bullet when

necessary.

Throughout the session, the teacher emphasizes the collaborative nature of these

interactions, showing how the algorithm is spread among cooperating objects. This helps

students appreciate the modular design and clear communication pathways within their

game.

6. Task 5.14 - Implement Shooting of Instance of Class Tower (30 minutes)

Objective: The teacher guides students through the implementation of the shooting

mechanism for the Tower class.

Concepts to Discuss: Object creation, actor positioning.

Activity:Students write code to enable the tower to shoot bullets.

The session begins with the teacher explaining the overall goal: to implement the shooting

mechanism for the Tower class. The teacher then breaks down the task into manageable

steps and guides the students through each one.

First, students prepare the necessary attributes and constructors for the Tower class. The

teacher explains that the Tower needs an attribute to keep track of when it can shoot.

Next, students create two methods: booleanTower.canShoot() and void Tower.fire().

Initially, these methods can return false and do nothing, respectively, so they can be used

in the act() method.The act() method is then updated to use these methods. The teacher

explains that the canShoot() method should return true if the shootCounter reaches 0. The

fire() method is implemented to create a Bullet instance and position it correctly.

The teacher ensures that students understand each part of the code, emphasizing the

creation of the Bullet object, positioning it in the world, and aligning its rotation with the

Tower.

Students then test their solution by running the game, placing a Tower instance, and

verifying that it shoots bullets at the appropriate intervals. The teacher encourages

students to troubleshoot any issues, ensuring the bullets are created and move as

expected.

By the end of the activity, students have implemented a functioning shooting mechanism

for the Tower class, reinforcing their understanding of object creation, actor positioning,

and method invocation in Greenfoot.

Commit: 62aec085954beacf996865a55bed312a09c675f2

Solution:The solution requires changes to the classTower.

For start, it is necessary to define new attributes, and proper constructor.

Figure 38. Task 5.14 - 1

Next, new methods should be defined and implemented.

Figure 39. Task 5.14 - 2

Finally, the method act() should be implemented.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/62aec085954beacf996865a55bed312a09c675f2

Figure 40. Task 5.14 - 3

7. Task 5.15 - Towers in Arena (20 minutes)

Objective: The teacher helps students integrate the towers and bullets into the game,

creating a functional arena.

Concepts to Discuss: Game integration, testing.

Activity:Students place towers in the arena and test their interactions with bullets and

enemies.

The teacher begins by explaining the goal: to integrate towers into the arena and ensure

they interact correctly with bullets and enemies. The session will involve placing towers in

the arena and testing their behavior within the game environment.

Students start by placing instances of the Tower class in various positions within the arena.

The teacher explains how to add towers through the Greenfoot interface, ensuring each

tower is correctly positioned.

Next, the teacher introduces the concept of overloading constructors. This is particularly

useful for initializing Tower objects with different rotations. The teacher then guides the

students through updating the Tower class to include an overloaded constructor that

accepts an integer parameter for rotation. This allows for greater control over the

placement and orientation of towers within the arena.

Commit: bfb6a271f490c341c760e654b3f86a87111c54cb

Solution:The solution requires changes to the classes: Arena and Tower.

For start, it is necessary to add instances of the Tower class in different places within the

arena.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/bfb6a271f490c341c760e654b3f86a87111c54cb

Figure 41. Task 5.15 - 1

After that, change the constructor of the class Tower, and add the new one that overloads

existing constructor.

Figure 42. Task 5.15 - 2

7.4: Greenfoot Objects on a Mission: Bullets, Enemies, and Game Dynamics

Title Greenfoot Objects on a Mission: Bullets, Enemies, and Game Dynamics

Learning
objectives

By the end of the scenario, students will develop proficiency in designing and

implementing interactive game dynamics using the Bullet and Enemy classes

within the Greenfoot environment. They will understand how to facilitate object

interactions through message passing, enabling effective communication

between game elements. Students will demonstrate the ability to implement

precise collision detection and response mechanisms, specifically detailing how

instances of the Bullet class interact with instances of the Enemy class. They will

gain practical insights into essential Greenfoot methods such as

Greenfoot.showText(String, int, int), Greenfoot.getRandomNumber(int), and

World.act(), using them to enhance game presentation, introduce randomness,

and manage game state updates. Furthermore, students will master the

implementation of enemy spawning mechanics and end-of-game conditions,

ensuring dynamic gameplay experiences. Through a revision of object

associations, students will solidify their understanding of how objects collaborate

to create engaging game dynamics, preparing them to apply these skills in future

game development projects.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including iteration and selection concepts. Students should be
introduced to Greenfoot.

Scenario
duration

1) Task 5.16 - Discuss how instance of class Bullet should interact with the
relevant objects using messages(15 minutes)

2) Task 5.17 - Implement instance of class Bullet hitting instance of class
Enemy (30 minutes)

3) Explanation of the code for methods Greenfoot.showText(String, int, int),
Greenfoot.getRandomNumber(int) and World.act() (15 minutes)

4) Task 5.18 - Spawn of enemies and end of the game (30 minutes)
5) Revision of Associations (20 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 110-minute learning scenario, secondary school students will dive into the
intricacies of game dynamics involving bullets and enemies within the Greenfoot
environment. The session focuses on developing students' skills in creating
interactive and dynamic gameplay through effective object interactions and
game mechanics.

The session begins with a 15-minute discussion on how instances of the Bullet
class should interact with relevant game objects using messages. This discussion
sets the foundation for understanding how objects communicate and collaborate
to achieve specific game behaviors.

Following this, students will dedicate 30 minutes to implementing the
functionality where instances of the Bullet class successfully hit instances of the
Enemy class. This task challenges students to apply their understanding of object
collision detection and event handling to create impactful interactions within the
game.

The next segment involves a 15-minute explanation of essential Greenfoot
methods: Greenfoot.showText(String, int, int),
Greenfoot.getRandomNumber(int), and World.act(). Students will gain insights
into how these methods contribute to displaying text, generating random
numbers for game mechanics, and managing the game world's update cycle.

Students then spend 30 minutes on tasks related to enemy spawning and end-of-
game conditions. This includes designing and implementing mechanisms for
spawning enemies at appropriate intervals and determining conditions for ending
the game based on player actions or game objectives.

A 20-minute revision session follows, focusing on consolidating understanding of
object associations and their roles in implementing game dynamics. Students will
review and refine their understanding of how objects interact and collaborate
within the Greenfoot environment to achieve desired gameplay effects.

At the conclusion of the scenario, students will emerge with a deeper
understanding of how to create interactive and engaging game dynamics
involving bullets, enemies, and strategic game mechanics within Greenfoot. They
will be equipped with practical skills in implementing object interactions,
managing game states, and enhancing player experiences through structured
game design principles.

Assessment The gamification represents non-formal assessment but will increase the interest,
intrinsic motivation and learning outputs of the whole group.

Result In order to disseminate their results to teachers and fellow students the usual

dissemination setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

7.2.2. A Teacher's Guide to Lesson Preparation

1) Task 5.16 - Discuss How Instance of Class Bullet Should Interact with the Relevant Objects

Using Messages (15 minutes)

Objective: The teacher leads a discussion on how bullets should interact with other objects,

particularly enemies, through message passing.

Concepts to Discuss: Message passing, collision detection, and object interaction.

Activity: The lesson begins with a review of object interactions within the Greenfoot

environment, focusing on how instances of different classes communicate and affect each

other. The teacher engages students in a discussion to reinforce these concepts and their

practical applications in game development.

Students brainstorm and discuss the logic for bullet interactions and the messages they

need to send.The teacher begins by explaining the importance of message passing in

object-oriented programming. The discussion will focus on how instances of the Bullet class

interact with other objects, such as enemies and the arena, particularly when a bullet hits

an enemy.

Students are encouraged to brainstorm and share their ideas on the logic for bullet

interactions. They consider questions like: What should happen when a bullet hits an

enemy? How should the bullet communicate this event to other objects? What messages

need to be passed to handle the interaction properly?

The teacher introduces the concept of collision detection, explaining how the game needs

to detect when a bullet intersects with an enemy. They also discuss the subsequent actions,

such as reducing the enemy's health or removing the enemy from the arena.

To visualize these interactions, the teacher uses a UML sequence diagram. The diagram

illustrates the messages exchanged between the Bullet, Enemy, and Arena classes during

the interaction.

2) Task 5.17 - Implement Instance of Class Bullet Hitting Instance of Class Enemy (30

minutes)

Objective: The teacher guides students through the implementation of the bullet-enemy

interaction.

Concepts to Discuss: Collision detection, method invocation, and object state changes.

Activity: Students write code to handle the collision between a bullet and an enemy,

including the effects of the collision.The teacher begins by explaining the concepts of

collision detection and method invocation in Greenfoot, emphasizing how these are crucial

for handling interactions between game objects. Students will be guided step-by-step to

implement the collision logic between bullets and enemies.

Students will first prepare the necessary attributes and methods in the Bullet and Enemy

classes. Students will write code in the Bullet class to detect collision with an Enemy

instance and call the Enemy.hit(Bullet) method. Students will then implement the

Enemy.hit(Bullet) method to handle the effects of the collision, such as reducing the

enemy's health or removing it from the game. Students will test their implementation to

ensure the bullet-enemy interaction works as intended.

By the end of the session, students will have a functional collision detection mechanism

between bullets and enemies, with appropriate method invocations and object state

changes. This exercise reinforces their understanding of collision detection, method calls,

and the practical application of these concepts in game development.

Commit: dcfe31bc006b7f3dcd8b8b759cc1be901c32913c

Solution:The solution requires changes to the classes: Arena, Bullet, Enemy and Tower.

For start, it is necessary to add attribute to the Bullet class, update constructor and define

the getter method.

Figure 43. Task 5.17 - 1

Similarly, add attribute to clad Enemy.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/dcfe31bc006b7f3dcd8b8b759cc1be901c32913c

Figure 44. Task 5.17 - 2

After that, update the act() method to call the hit() method.

Figure 45. Task 5.17 - 3

Next, add implementation of hit() method of class Enemy.

Figure 46. Task 5.17 - 4

Then, apply necessary changes to class Arena tocall constructor correctly, and implement

kill() method.

Figure 47. Task 5.17 - 5

Finally, apply necessary changes to class Tower to call constructor correctly.

Figure 48. Task 5.17 - 6

3) Explanation of the Code for Methods:Greenfoot.showText(String, int, int),

Greenfoot.getRandomNumber(int), and World.act() (15 minutes)

Objective: The teacher explains the usage of specific Greenfoot methods that will be useful

in the game.

Concepts to Discuss: Displaying text, random number generation, and the act method.

Activity:Students learn how to display text on the screen, generate random numbers, and

implement game logic in the act method.

The teacher begins by introducing the Greenfoot methods Greenfoot.showText(String, int,

int), Greenfoot.getRandomNumber(int), and World.act(). The purpose of these methods is

discussed, highlighting their importance in game development for displaying information,

creating randomness, and defining behaviors.

Method Greenfoot.showText(String, int, int) is used to display text on the screen at

specified coordinates. The teacher explains that this method is useful for showing game

information such as scores, health, or instructions directly on the game screen.

Method Greenfoot.getRandomNumber(int) generates a random number between 0

(inclusive) and the specified value (exclusive). The teacher discusses how this method can

be used to introduce randomness into the game, such as spawning enemies at random

locations or generating random movement patterns.

Method World.act() is called repeatedly by the Greenfoot framework to execute the main

game logic. The teacher emphasizes that the act method is where the main game actions

and logic are placed, allowing for continuous updates and interactions within the game.

4) Task 5.18 - Spawn of Enemies and End of the Game (30 minutes)

Objective: The teacher helps students implement the spawning of enemies and the end-

game conditions.

Concepts to Discuss: Object spawning, game loop, and end-game conditions.

Activity:Students write code to periodically spawn enemies and define the conditions that

trigger the end of the game.The teacher begins by explaining the importance of spawning

enemies at regular intervals and defining the end-game conditions when all enemies are

defeated. The concepts of object spawning, game loops, and end-game conditions are

discussed, providing students with a clear understanding of what needs to be

implemented.

The Arena.act() method will be used to call the enemy spawning process periodically. A

delay mechanism should be introduced to control the interval between enemy spawns.

Create the spawn() method in the Arena class to handle the actual spawning process. This

method will create an instance of the Enemy class, assign properties to the enemy (e.g.,

position, attributes), add the enemy instance to the arena.

Students will define and implement end-game condition. When number of enemies drop to

zero, the game is over, and playerwon. To do so, students should maintain an attribute in

the Arena class to keep track of the number of created enemies. Increment this attribute

each time an enemy is spawned and decrement it when an enemy is killed. Method

Arena.kill(Enemy) should be adjusted to check if all enemies are defeated. If all enemies are

killed, stop the game using Greenfoot.stop() and display a victory message. Therefore,

calling the Greenfoot.stop() should be the last command in the method.

At the end, test the spawning mechanism by observing the periodic creation of enemies in

the arena. Ensure that the delay between spawns is functioning correctly. Verify the end-

game condition by simulating the defeat of all enemies and checking if the game stops with

a victory message displayed.

By the end of this session, students will have implemented a functional enemy spawning

system and defined clear end-game conditions, reinforcing their understanding of game

loops, object management, and condition-based game outcomes.

Commit: d48341a095561500af6032d5c8f56e201060f9a4

Solution:The solution requires changes to the class Arena.

Define new attributes in Arena class.

Figure 49. Task 5.18 - 1

In constructor, initialize attribute values.

Figure 50. Task 5.18 - 2

Implement the act() method to spawn enemies periodically, and implement the spawn()

method.

Figure 51. Task 5.18 - 3

Finally, update the kill() method.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/d48341a095561500af6032d5c8f56e201060f9a4

Figure 52. Task 5.18 - 4

5) Revision of Associations (20 minutes)

Objective: The teacher reviews the concept of associations between classes, emphasizing

how objects interact and communicate in Greenfoot.

Concepts to Discuss: Associations, object communication, and message passing.

Activity:Students discuss and revise their understanding of associations, drawing

connections between different objects and their interactions.

The teacher starts by revisiting the key concepts related to associations between classes.

This includes how objects interact, communicate, and pass messages to each other. To

facilitate this, the teacher can draw on examples and tasks covered in previous lessons,

helping students consolidate their knowledge and understand how these concepts apply

within the Greenfoot environment.

Use UML sequence diagrams to visually represent the interactions between different

objects. For instance, show the sequence of messages when Bullet hits an Enemy and how

the Arena handles the spawning and removal of enemies.

By the end of this session, students will have a reinforced understanding of associations

and object interactions within the Greenfoot environment. They will be able to clearly

articulate how different objects in their game communicate and collaborate, applying these

concepts to their own game development projects.

8. Inheritance
Six teaching scenarios have been created within the Variable and expressions thematic unit.

8.0. Introduction to Inheritance in the Greenfoot Environment

Title Introduction to Inheritance in the Greenfoot Environment

Learning
objectives

By the end of this session, students will be able to understand the concepts of
inheritance. Understanding of the examined concepts will be discussed in the
context of game development, encouraging creativity, teamwork, and an
enthusiastic approach to coding withtheGreenfoot tool.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledgeand basic object-oriented programming knowledge.Students should
be introduced to Greenfoot.

Scenario
duration

1. Basic concepts of inheritance (15 minutes)
2. Class hierarchy and inheritance (15 minutes)
3. Task 6.1 and 6.2: Identification of common properties (15 minutes)and

identification of the ancestor class (15 minutes)
4. Introduction to abstract classes(5 minutes)
5. Task 6.3: Definition of an abstract class in the game (10 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this 75-minute learning scenario, secondary school students are introduced to
object-oriented programming principles related to inheritance through the lens
of game development by applying the Greenfoot tool. The session begins with a
15-minute introduction by the teacher on basic inheritance concepts,
establishing context related to previous sessions and future game development.

This is followed by a 15-minute scenario, during which students and teachers
discusses on the class hierarchy withintheir game. In order to explain
inheritance-related concepts, classes Orb and Direction are observed. During the
next 15-minute task, the identification of common properties for these classes is
explored. It is observed that these classes do not act during their lifetime; they
simply react to messages. Consequently, a common method for acting, the act()
method, is identified. This method will be defined in both classes with an empty
body.Based on the identified common properties, in the next 15 minutes new
class PassiveActorcontainingact() method was implemented.

In the next 5-minute scenario, abstract classes are introduced. Abstract classes
serve as blueprints for other classes and cannot be instantiated. However, they
are essential in designing class hierarchies. Given that the PassiveActor class is a
blueprint for acting, it is defined as an abstract class in the next 10-minute

scenario. Additionally, PassiveActoris established as the ancestor of the Orb and
Direction classes, making Orb and Direction its descendants. Since the act()
method is already defined in the PassiveActor class, it is removed from the Orb
and Direction classes.

As a result, by the end of the session, students are introduced to novel concepts
related to inheritance.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Considering the importance of the inheritance concepts, the project structure
opens possibilities for further discussion and modification. In this context, more
classes and their hierarchy can be considered, and additional classes, methods
and attributes can be introduced. On the other hand, teacher may adapt this
topic to show benefits of inheritance and with it connected universality only on
here proposed hierarchies.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

8.0.1. A teacher's Guide to Lesson Preparation

1. Basic concepts of inheritance

Objective: Establishing context related to previous sessions, introducing and explaining the

concept of inheritance through real-life examples, and discuss its benefits.

Concepts to Discuss: Inheritance, Real-world inheritance examples.

Activity:In the introduction section context related to the previous sessions isestablished.
Teacher introduces the concept ofinheritance. Teacher should make this concept more
relatable to students by using real-life examples (e.g., if parent-child relation is considered,
children inherit characteristics from their parents, like hair type, eye color, etc.). The
benefits of inheritance should be discussed. These concepts are considered in the context
of the Greenfoot Environment and Java programing language.

2. Class hierarchy and inheritance

Objective: Introducing the class hierarchy in the context of inheritance by explaining

ancestor and descendant classes, discussing real-life examples and the inheritance of

properties, highlighting the benefits of class hierarchy.

Concepts to Discuss: Inheritance, Class Hierarchy, Real-world class hierarchy examples,

Benefits of inheritance and class hierarchy.

Activity:Teacher introduces the class hierarchy in the context of inheritance concept.
Teacher introduces ancestor class (also known as: super class, parent class) and descendant
classes (also known as: subclasses, child classes):

o Previously examined real-life classes can be discussed in this context,
o In this context, it should be discussed that subclasses can inherit properties (i.e.,

attributes and methods) from theparent class,

o However, it should be discussed that subclasses can incorporate additional

properties not available in the parent class,

Benefits of the class hierarchy in the context of inheritance conceptshould be discussed. It
should be explained that in Java programing language each class can have multiple subclasses,
but only one parent class. The role of the Object class in the context of class hierarchy and
inheritance can be discussed.

3. Task 6.1 and 6.2 : Identification of common properties and identification of the ancestor
class

Objective: Identifying common properties in the game classes, finding the ancestor class

and implementing a new class in the class hierarchy.

Concepts to Discuss: Inheritance, Class Hierarchy, Implementation of inheritance and class

hierarchy in the game development.

Activity:In the context of game development, the Orb and Direction classes are considered.
It should be observed that these classes react to messages. Therefore, a common method
for acting, the act() method, should be identified.Based on the identified common
properties, new class PassiveActor containing act() method should be implemented:

o These classes (PassiveActor, Orb, and Direction) should be used for representing
class hierarchy in the context of inheritance,

o Teacher can visually represent class hierarchy by using the hierarchy diagram.
o Teacher alerts the students what changed in the Greenfoot enviroment when Actor

in substituted with PassiveActor in the class
Commit: afe617814c07a5d885ed06479bf71deda8725f19

Solution:The solution requires creating new class PassiveActor, and changes to the classes

Direction and Orb.

Create classPassiveActor.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/afe617814c07a5d885ed06479bf71deda8725f19

Figure 53. Task 6.1 and 6.2 - 1

Change the definition of class Direction by extending previously defined class PassiveActor.

Figure 54. Task 6.1 and 6.2 - 2

Similarly, change the definition of class Orb by extending previously defined class PassiveActor.

Figure 55. Task 6.1 and 6.2 - 3

4. Introduction to abstract classes

Objective: Introducing the concept of abstract classes, discussing their role as blueprints in

designing class hierarchies, and explore real-world examples to illustrate their application

and specialization into subclasses.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes, Real-world examples of

abstract classes in the context of inheritance and class hierarchy.

Activity:The concept of abstract class is introduced by the teacher. It should be discussed
that abstract classes serve as blueprints for other classes and cannot be instantiated.
However, they are essential in designing class hierarchies. Real-world examples related to

abstract classes and subclasses can be discussed by the teacher and students (e.g., class
Computer with basic properties can be defined as an abstract class, and can be specialized
to Console, Desktop, Laptop, and Mobile Phone, each with a specific set of properties, etc.).
Another example could be geometric figures. Rectangle or triangle can be inherited from
abstract class figure. When calculation girt and area of general figure we do not have exact
formula. But we have exact formula for rectangle and triangle. Square can be inherited
from rectangle. Students should discuss more examples of geometric figures and bodies.

5. Task 6.3: Definition of an abstract class in the game

Objective: Discussingthe role of the PassiveActor class, and implementing the class as an

abstract.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes, Implementation of an

abstract class in the game development.

Activity:The concept of abstract class is considered in theGreenfoot Environment and Java
programing language. In the context of game development, the PassiveActor class is a
blueprint for acting. Therefore, it is defined as an abstract class and established as the
ancestor of the Orb and Direction classes, making Orb and Direction its descendants. Since
the act() method is already defined in the PassiveActor class, it should be removed from
the Orb and Direction classes.

Commit: f7a5702cae29bf21c9c88620d01ef64e4127c21c

Solution:The solution requireschanges to the classes PassiveActor.

Change the declaration of class PassiveActor, and define it as abstract.

Figure 56. Task 6.3

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/f7a5702cae29bf21c9c88620d01ef64e4127c21c

8.1. Inheritance Concepts in theGreenfoot Environment (Part 1)

Title Inheritance Concepts in the Greenfoot Environment

Learning
objectives

By the end of this session, students will understand additional concepts of
inheritance. The examined concepts will be discussed in the context of game
development, encouraging creativity, teamwork, and an enthusiastic approach to
coding in the Greenfoot environment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge and basic object-oriented programming knowledge. Students should
be introduced to Greenfoot.

Scenario
duration

1) Task 6.4.:Identification of common properties related to entity movement
(15 minutes)

2) Task 6.5.: Definition of anabstractclassrelated to entity movement(15
minutes)

3) Task 6.6.: Identification of class-specificproperties related to entity
movement (15 minutes)

4) Introduction to the super keyword in the context of inheritance
(20minutes)

5) Task 6.7. : Refactoring code related to entity movement (30 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 95-minute learning session, secondary school students are introduced
to advanced inheritance-related concepts by applying the Greenfoot tool. The
session begins with a 15-minute scenario investigating common properties
related to entity movement, focusing on the Bullet and Enemy classes. These
classes act similarly during lifetime, they move the same way and afterwards
they react to the surroundings.

Based on the identified common properties, in the next 15-minute task new
abstract class MovingActor containing act() method was implemented. This class
is a common ancestor that will implement method act() to move in same way
and make subclasses focus on their specific purpose. Additionally, MovingActor is
established as the ancestor of the Bullet and Enemy classes, making Bullet and
Enemy its descendants.

In the next 15-minute scenario class-specific properties related to entity
movement are examined. In this context, the act() method of respective classes
is investigated, as well as the attributes moveDelay and nextMoveCounter. It can
be observed that code of act() method responsible for movement is the same.

This is followed by a 20-minute scenario, during which the super keyword in the

context of inheritance was introduced.

In the last 30-minute scenario code refactoring related to entity movement was
performed. As a result, previously identified attributes moveDelay and
nextMoveCounter from Bullet and Enemy subclasses are moved to the ancestor
class MovingActor. In addition, parametric constructor to initialize these
attributes is defined in MovingActor class. This constructor with proper
parameters was invoked from the Bullet and Enemy subclasses using the super
keyword. Furthermore, the code responsible for movement in act() method of
subclasses Bullet and Enemy was moved to act() method of MovingActor class,
while the rest of the implementation remains unchanged in the subclasses.
Finally, parent version of method act() is invoked as first line of method act() in
subclasses Bullet and Enemy.

As a result, by the end of the session, students are introduced to novel concepts
related to inheritance.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Considering the importance of the inheritance concepts, the project structure
opens possibilities for further discussion and modification. In this context, more
classes and their hierarchy can be considered, and additional classes, methods
and attributes can be introduced.On the other hand, teacher may adapt this
topic to show benefits of inheritance and with it connected universality only on
here proposed hierarchies.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

8.1.1. A teacher's Guide to Lesson Preparation

1. Task 6.4.: Identification of common properties related to entity movement

Objective: Examining the Bullet and Enemy classes, highlighting their similar behaviors

during their lifetimes, particularly how they move and react to their surroundings.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes.

Activity:The focus is onBullet and Enemy classes, which act similarly during lifetime. It
should be observed that these classes move the same way and afterwards react to the
surroundings.

2. Task 6.5.: Definition of an abstract class related to entity movement

Objective: Examining the Bullet and Enemy classes, highlighting their similar behaviors

during their lifetimes, particularly how they move and react to their surroundings.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes, Implementation of an

abstract class in the game development.

Activity:Based on the identified common properties, new abstract class MovingActor
containing act() method should be implemented. Additionally, MovingActor is established
as the ancestor of the Bullet and Enemy classes, making Bullet and Enemy its descendants.
It should be discussed that the subclasses inherit common properties from the parent
class.The MovingActor class is a blueprint for class design and should be declared as an
abstract.

Commit: 43e53b533563ce0a860b294ad9009f77409c48d4

Solution:The solution requires creating new class MovingActor, and changes to the classes

Bullet and Enemy.

Create abstract class MovingActor that extends class Actor.

Figure 57. Task 6.5 - 1

Change the definition of class Bullet by extending previously defined class MovingActor.

Figure 58. Task 6.5 - 2

Similarly, change the definition of class Enemy by extending previously defined class
MovingActor.

Figure 59. Task 6.5 - 3

3. Task 6.6.: Identification of class-specific properties related to entity movement

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/43e53b533563ce0a860b294ad9009f77409c48d4

Objective: Examining the Bullet and Enemy classes, highlighting their similar behaviors

during their lifetimes, particularly how they move and react to their surroundings.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes.

Activity:Class-specific properties related to entity movement are examined. The act()
method of respective classes is investigated, as well as the attributes moveDelay and
nextMoveCounter. It can be observed that code of act() method responsible for movement
is the same.

4. Introduction to the super keyword in the context of inheritance

Objective: introducing the super keyword in the context of inheritance, demonstrating its

use to invoke properties from the parent class, and discussingits benefits.

Concepts to Discuss: Inheritance, Class Hierarchy, The super keyword in the context of

inheritance. Position of super statement.

Activity:The teacher introduces the super keyword. The super keyword in the context of
inheritance was introduced:

o super keyword can be used in order to invoke constructor from the parent class,
o super keyword can be used in order to invoke method from the parent class,
o super keyword can be used in order to invoke attribute from the parent class,
o super must be first statement

Benefits of using the super keyword in the context of inheritance should be discussed.

5. Task 6.7. : Refactoring code related to entity movement

Objective: Refactoring code related to entity movement from Bullet and Enemy subclasses

to the ancestor class MovingActor.

Concepts to Discuss: Inheritance, Class Hierarchy, The super keyword in the context of

inheritance.

Activity:Code refactoring related to entity movement was performed. Previously identified
attributes moveDelay and nextMoveCounter from Bullet and Enemy subclasses are moved
to the ancestor class MovingActor. Parametric constructor to initialize these attributes is
defined in MovingActor class. This constructor with proper parameters was invoked from
the Bullet and Enemy subclasses using the super keyword. The code responsible for
movement in act() method of subclasses Bullet and Enemy was moved to act() method of
MovingActor class, while the rest of the implementation remains unchanged in the
subclasses. Finally, parent version of method act() is invoked as first line of method act() in
subclasses Bullet and Enemy.It should be discussed that subclasses can incorporate
additional properties not available in the parent class (i.e., different implementation of
act() method).

Commit: ca1f010a63445c1847b74259a1c6cd4817121db3

Solution:The solution requireschangesto the classesMovingActor, Bullet and Enemy.

Create attributes in abstract class MovingActor that were previously part of Bullet and
Enemy classes, and create proper parametrized constructor.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/ca1f010a63445c1847b74259a1c6cd4817121db3

Figure 60. Task 6.7 - 1

Make changes toclasses Bullet and Enemy by removing existed attributes that became part
of abstract class MovingActor, and change the constructors to call the super constructor.

Figure 61. Task 6.7 - 2

Figure 62. Task 6.7 - 3

Make changes to classes MovingActor by implementing the act method to ensure behavior
previously implemented in Bullet and Enemy classes and their act method concerning
moving delay.

Figure 63. Task 6.7 - 4

Finally, change the implementation of act methods in classes Bullet and Enemy, by
removing part related to movement, and replacing it with super.act call.

Figure 64. Task 6.7 - 5

Figure 65. Task 6.7 - 6

8.2. Inheritance Concepts intheGreenfootEnvironment(Part 2)

Title Inheritance Concepts in the Greenfoot Environment

Learning
objectives

By the end of this session, students will understand additional concepts of
inheritance. The examined concepts will be discussed in the context of game
development, encouraging creativity, teamwork, and an enthusiastic approach to
coding in the Greenfoot environment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge and basic object-oriented programming knowledge. Students should
be introduced to Greenfoot.

Scenario
duration

1) Task 6.8. : Creation of custom enemies (30 minutes)
2) Introduction to the Liskov Substitution Principle (20 minutes)
3) Task 6.9.: Spawning of custom enemies (20 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 70-minute learning session, secondary school students are
introduced to advanced inheritance concepts using the Greenfoot tool. The
session begins with a 30-minute scenario focusing on the Enemy class, where
students create additional subclasses representing different enemies (e.g., Frog
and Spider). In this context, images and parameterless constructors (with
appropriate invocation of the parent constructor) are defined for each type of
enemy.

In the next 20-minute scenario, the Liskov Substitution Principle (LSP) is
introduced. This principle, part of the SOLID principles of object-oriented design,
states that functions that use pointers or references to parent classes should be
able to use objects of subclasses.

Following this, a 20-minute task is dedicated to spawning custom enemies. The
Arena.spawn() method is examined, and custom enemies are created through
various decisions and stored in a variable of type Enemy. It is observed that no
other code in the application needs to be changed, demonstrating the
application of the LSP.

As a result, by the end of the session, students are introduced to advanced
inheritance concepts and practical applications.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Considering the importance of the inheritance concepts, the project structure
opens possibilities for further discussion and modification. In this context, more

classes and their hierarchy can be considered, and additional classes, methods
and attributes can be introduced. On the other hand, teacher may adapt this
topic to show benefits of inheritance and with it connected universality only on
here proposed hierarchies.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. Moodle will be
used). The students can continue the discussion on the topic on the forum
provided to them via the Learning management tool.

8.2.1. A teacher's Guide to Lesson Preparation

1. Task 6.8. : Creation of custom enemies

Objective: Defining subclasses of the Enemy class, each with images and parameterless

constructors that appropriately invoke the parent constructor.

Concepts to Discuss: Inheritance, Class Hierarchy, The super keyword in the context of

inheritance.

Activity:The focus in on the Enemy class and definition of additional subclasses
representing different enemies (e.g., Frog and Spider). Images and parameterless
constructors (with appropriate invocation of the parent constructor) should be defined for
each enemy type.

Commit: b0ac1fbe793548a32f7700c292aed631918c8388

Solution:The solution requirescreating two classes:Frog and Spider that extends class

Enemy.

Create class Frog that extends class Enemy, and implement constructor without
parameters.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/b0ac1fbe793548a32f7700c292aed631918c8388

Figure 66. Task 6.8 - 1

Create class Spider that extends class Enemy, and implement constructor without
parameters.

Figure 67. Task 6.8 - 1

2. Introduction to the Liskov Substitution Principle

Objective: introducing the Liskov Substitution Principle, discussing real-world, and

exploring the benefits of adhering to this principle in the context of inheritance.

Concepts to Discuss: Inheritance, Class Hierarchy, Reference variables, The Liskov

substitution principle.

Activity:The Liskov Substitution Principle is introduced. This principle is part of the SOLID
principles of object-oriented design. The principle states that functions that use pointers or
references to parent classes should be able to use objects of subclasses. Real-word
examples should be discussed (e.g., if Computer class is defined as the parent class, and
Console, Desktop, Laptop, and Mobile Phone classes are defined as subclasses, the Liskov
Substitution Principle says that functions which are using Computer class will also work
with all subclasses, without any change in the code). Benefits of using the Liskov
Substitution Principlein the context of inheritance should be discussed.

3. Task 6.9.: Spawning of custom enemies

Objective: Demonstrating the application of the Liskov Substitution Principle by creating

custom enemies.

Concepts to Discuss: Inheritance, Class Hierarchy, Reference variables, The Liskov

substitution principle.

Activity:The task is dedicated to spawning custom enemies. The Arena.spawn() method is
examined, and custom enemies are created through various decisions and stored in a
variable of type Enemy. It should be observed that no other code in the application needs
to be changed, demonstrating the application of the Liskov Substitution Principle.

Solution:The solution requireschanges to method spawn in class Arena.

Change the implementation of spawn method to create different kinds of enemies.

Figure 68. Task 6.9

Commit: 8cd4397f585ec957bbc18ca98e01823f434a13a6

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/8cd4397f585ec957bbc18ca98e01823f434a13a6

8.3. Inheritance Concepts in theGreenfoot Environment (Part 3)

Title Inheritance Concepts in the Greenfoot Environment

Learning
objectives

By the end of this session, students will understand additional concepts of
inheritance. The examined concepts will be discussed in the context of game
development, encouraging creativity, teamwork, and an enthusiastic approach to
coding in the Greenfoot environment.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge and basic object-oriented programming knowledge. Students should
be introduced to Greenfoot.

Scenario
duration

1) Task 6.10.:Discuss hierarchy of Arenas (20 minutes)
2) Task 6.11 and 6.12..: Make universal Arena (30 minutes) and create

DemoArena (15 minutes)
3) Task 6.13.:Create custom arenas (30 minutes)
4) Inheritance theory revision (20 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description During this 115-minute learning session, secondary school students are
introduced to advanced inheritance concepts using the Greenfoot tool. The
session begins with a 20-minute discussion about the Arena hierarchy.
Subclasses of Arena are responsible for custom layouts (e.g., positions of Orb and
Direction instances, size of the arena). These tasks are performed in the
constructors of the subclasses, which set and store spawning positions, rotations,
and dimensions of the arena.

In the subsequent 30-minute task, a universal Arena class is introduced.
Additional attributes (spawnPositionX, spawnPositionY, and spawnRotation) are
defined, initialized in the constructor, and used in the spawn() and
respawn(Enemy) methods. Attributes related to the arena's dimensions (width
and height) are also defined and initialized in the constructor. As the Arena class
serves as a blueprint for defining concrete arenas, it is defined as an abstract
class.

Based on the identified Arena class, the next 15-minute task introduces the
DemoArena subclass. The DemoArena constructor is defined, invoking the parent
class constructor, and the code responsible for the layout of directions, orbs, and
towers is moved from the Arena constructor to the DemoArena constructor.
Finally, a new instance of the DemoArena class is created.

In the following 30-minute scenario, other innovative subclasses of class Arena
are created. Code can be shared with other students in the group.

Finally, the last 20-minute scenario covers inheritance-related theory.

As a result, by the end of the session, students are introduced to advanced
inheritance concepts and practical applications.

Assessment The gamification represents non-formal assessment but will increase the
interest, intrinsic motivation and learning outputs of the whole group.

Considering the importance of the inheritance concepts, the project structure
opens possibilities for further discussion and modification. In this context, more
classes and their hierarchy can be considered, and additional classes, methods
and attributes can be introduced. On the other hand, teacher may adapt this
topic to show benefits of inheritance and with it connected universality only on
here proposed hierarchies.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. moodle will be
used). The students can continue the discussion on the topic on the forum that is
provided to them via the Learning management tool.

8.3.1. A teacher's Guide to Lesson Preparation

1. Task 6.10.: Discuss hierarchy of Arenas

Objective: Exploring the Arena class hierarchy, highlighting how subclasses are responsible

for defining custom layouts, and implementing these layouts within their respective

constructors.

Concepts to Discuss: Inheritance, Class Hierarchy, Constructors.

Activity:The Arena class hierarchy is discussed,It should be observed that the subclasses of

Arena are responsible for custom layouts (e.g., positions of Orb and Direction instances,

size of the arena). These tasks are performed in the constructors of the subclasses, which

set and store spawning positions, rotations, and dimensions of the arena.

2. Task 6.11. and 6.12.: Make universal Arena and create DemoArena

Objective: Introducing a universal Arena abstract class, definingand initializing a concrete

Arena subclass, exploring the Arena class hierarchy.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes, Constructors.

Activity:Based on the previous discussion, a universal Arena class is introduced. Additional

attributes (spawnPositionX, spawnPositionY, and spawnRotation) are defined, initialized in

the constructor, and used in the spawn() and respawn(Enemy) methods. Attributes related

to the arena's dimensions (width and height) are also defined and initialized in the

constructor. As the Arena class serves as a blueprint for defining concrete arenas, it is

defined as an abstract class.

Solution:The solution requireschanges to class Arena.

Class Arena should be declared as abstract.Additional attributes (spawnPositionX,

spawnPositionY, and spawnRotation) are defined and initialized in the constructor.

Figure 69. Task 6.11 and 6.12 - 1

Change methodsspawn() and respawn(Enemy)to use new defined attributes.

Figure 70. Task 6.11 and 6.12 - 2

Commit: e9844d7d9b5f19969618b469ebc907d0fe3c1357

Based on the identified Arena class, the DemoArena subclass is defined. The DemoArena
constructor is defined, invoking the parent class constructor, and the code responsible for
the layout of directions, orbs, and towers is moved from the Arena constructor to the

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/e9844d7d9b5f19969618b469ebc907d0fe3c1357

DemoArena constructor. Finally, a new instance of the DemoArena class is created.To
activate Demoarena, right click and select new DemoArena.

Solution:The solution requirescreating class DemoArena and changes to class Arena.

Create class DemoArena that extends class Arena, and implement constructor that calls
super constructor.

Figure 71. Task 6.11 and 6.12 - 3

Make changes to class Arena by removingparts of constructor that was moved to class
DemoArena.

Figure 72. Task 6.11 and 6.12 - 4

Commit: 6a6569774b5735f453a56c7cb2cdbf19d228eae9

3. Task 6.13.:Create custom arenas

Objective: Definingand initializing customArena subclasses, exploring the Arena class

hierarchy.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes, Constructors.

Activity:Other innovative subclasses of class Arena are created. Code can be shared with

other students in the group.

4. Inheritance theory revision

Objective: Reviewing the concept and benefits of inheritance, discussing class hierarchy

and abstract classes, exploring the super keyword and the Liskov Substitution Principle

along with their advantages, and examining both real-life and game-related inheritance

examples and implementations.

Concepts to Discuss: Inheritance, Class Hierarchy, Abstract classes, The super keyword, The

Liskov Substitution Principle, Real-life and Game-related inheritance examples and

implementations.

Activity:The concept of inheritance is reviewed. Benefits of inheritance are reviewed. The

class hierarchy and its benefits in the context of inheritance concept are discussed. The

concept of abstract class is reviewed. The super keyword in its benefits in the context of

inheritance are discussed. The Liskov Substitution Principle is reviewed and benefits of

using the Liskov Substitution Principlein the context of inheritance are discussed. Real-life

inheritance examplesare discussed.Game-related inheritance examples and

implementation are discussed.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/6a6569774b5735f453a56c7cb2cdbf19d228eae9

9. Encapsulation

Two teaching scenarios have been created within the Encapsulation thematic unit.

9.1. Exploring Encapsulation through Game Development with Greenfoot

Title Exploring Encapsulation through Game Development with Greenfoot

Learning
objectives

The purpose of this learning scenario is to introduce encapsulation to the
students through further development of TowerDefense game.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including inheritance. Students should be introduced to Greenfoot in
general.

Scenario
duration

1. Introduction (5 minutes)
2. Task 7.1.: Team Collaboration and Coding (20 minutes)
3. Task 7.2 and 7.3.: Team collaboration (30 minutes)
4. Discussion (35 minutes)
5. Code explanation (25 min)

6. Task 7.4.: Team Formation and Project Assignment (10 minutes)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description In this session, secondary school students will learn about encapsulation within
object-oriented programming (OOP) in the Greenfoot. The session begins with a
concise 5-minute introduction where the teacher outlines the objectives.

Students start by developing the ManualTower class as a subclass of the Tower
class. This activity focuses on defining two constructors that are consistent with
the parent class's constructors to ensure proper initialization. They should
implement an act() method which first calls the parent class's act() method.

Following the class creation, the instructor introduces a boolean attribute
isManuallyControlled, initialized to false. Students create a method
changeControl(boolean) which toggles the isManuallyControlled state and alters
the tower's image accordingly, demonstrating encapsulation by controlling
access to the state of an object through methods. Each student should then
manually trigger the changeControl() method on instances of ManualTower and
observe how the internal state and external representation change.

The core of the session is the development of a private method
processUserControl() which should detect mouse clicks on the tower instance.
When clicked, the method changes the tower's control state and updates its

orientation based on mouse position, using encapsulation to hide the complex
control logic. Students should implement the method and integrate it within the
act() method, testing interaction with the game environment to ensure
functionality and learning how private methods protect the code form external
changes.

Assessment This activity will enable teachers to give formative assessment feedback based
upon the discussions and monitoring of students’ flipped classroom and
teamwork.

The peer-review assessment will be performed online as a part of a homework
assignment. This will remind students of important aspects of the exercise, will
make them critically assess other students' work, will give them insights into
good or not so good solutions of their peers etc, and will increase the overall
achievement of learning outcomes.The work in the team-project that the
students are working on will also use these learning outcomes and knowledge.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. Moodle will be
used). The students can continue the discussion on the topic on the forum
provided to them via the Learning management tool.

9.1.1. A teacher's Guide to Lesson Preparation

1. Introduction

The teacher should start the previously developed game and observe how different actors
behave. Suggest developing another type of tower that can be manually controlled to
remove enemies more easily. The user should be able to control one tower at a time. When
the tower is clicked, it should become manually controlled. To indicate which tower is
manually controlled, the currently controlled tower should have a different appearance.

2. Task 7.1.:Team Collaboration and Coding

Objective:PreparingclassManualTower for the session

Concepts to discussinheritance, classes, constructors

Activity:Since students already know how to make a descendant class, let them form teams
and create a ManualTower class as a descendant of the Tower class. Students should
implement both the constructors and the act method, ensuring that the super constructors
are called from these methods. In this part of the class, students will review the material,
apply it, and improve their practical knowledge of inheritance.

Commit: 63a02fa0c5080165cba8b467da08c4b65f31d0a8

Solution: First, add new class ManualTower:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/63a02fa0c5080165cba8b467da08c4b65f31d0a8

Figure 73. Task 7.1

3. Task 7.2. and Task 7.3: Team collaboration

Objective:The teacher explains the need for private methods to the students by defining
the changeControl() function

Concepts to discuss: methods, classes, attributes, access modifiers

Activity:The teacher should prepare icons for the manually controlled tower. To change the
icon of the object programmatically, the teacher should explain to the students how to use
the Actor.setImage(String) method. Allow students some time to test this function.

The teacher should discuss with students how to determine whether the tower is manually
controlled. Emphasize that it is not only important to change the object's state but also to
update its image. Highlight that if a user wants to change the state of a Tower object and
only changes the attribute directly, the image will remain the same. This discussion should
help students understand the need to change the value of an attribute through a method
and to keep attributes private rather than public. Explain to the students that this practice
is called encapsulation, where the internal state is hidden, and public methods are used to
change that state in a controlled manner.

Allow the students to implement the logic of the function. Let them manually invoke their
method and observe changes in the internal state.

Commit: 2257746b7dac5eaab7acc55d6493319230338f3a

Solution:First, add isManuallyControlled attribute and set it to false inside of the
constructor.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/2257746b7dac5eaab7acc55d6493319230338f3a

Figure 74. Task 7.2 and 7.3

Second, add changeControl(boolean) method which alters the ManualTower’s state and
changes it’s image accordingly.

Figure 75. Task 7.2 and 7.3

4. Discussion

Objective:Understanding encapsulation of logic inside a separate method

Concepts to discuss: methods, branching

Activity: The teacher should point out that the tower's state can be changed only by
manually invoking the method. Point out that the mouse could be outside the world, in
which case the mouse information will be null. Remind students that the act() method is
constantly running during the game and that it should check whether the object has been
clicked and only then invoke the changeControl() method. Highlight that the logic for
processing the control should be encapsulated inside a separate
methodprocessUserControl().

5. Code explanation

Objective: Introducing method needed for resolving the problem

Concepts to discuss:methods, Greenfoot environment

Activity: Consider how to change the actor's state by clicking on the object. To implement
this, the GreenFoot.mouseClicked(Object) method should be explained. Also, introduce
MouseInfoobject, which can be used for retrieving informations about the mouse position.

6. Task 7.4.: Team Formation and Project Assignment

Objective:Enhance understanding of private methods and encapsulation through practical
assignment

Concepts to discuss: methods, access modifiers, classes

Activity: After defining the processUserControl() private method, let students implement
its logic. When the mouse is clicked, the controlled tower should change. If the tower is
manually controlled, it should follow and be directed towards the mouse. Remind them
that it is possible for mouse to be outside the world. After grouping students into teams, let
them implement the logic of the processUserControl() method.

One or two teams will present their work, and the group will discuss the results along with

the teacher.By the end of the session, all students should understand how this method is

implemented.

Commit: 6ec1f489576019a6493490f9e97797920b923869

Solution:Add private method processUserControl() in the ManualTower class:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/6ec1f489576019a6493490f9e97797920b923869

Figure 76. Task 7.4 - 1

Don’t forget to call this function in the act() method of the same class.

Figure 77. task 7.4 - 2

9.2. Exploring Encapsulation through Game Development with Greenfoot

Title Exploring Encapsulation through Game Development with Greenfoot

Learning
objectives

The purpose of this learning scenario is to introduce encapsulation to the
students through further development of TowerDefense game.

Target
audience

Secondary school students attending the OOP4Fun course. Basic programming
knowledge including inheritance. Students should be introduced to Greenfoot in
general.

Scenario
duration

1) Flipped Classroom Session (30 minutes): Students should identify the
problem with the previously implemented user control and student
should investigate how to solve the problem.

2) Class attributes (5 minutes)
3) Task 7.6.: Add evidence of manually controlled tower (5 minutes)
4) Method of class (10 minutes)
5) Task 7.7.: Change of manually controlled tower from centralized place (20

min)
6) Task 7.8.: Invoke change of manually controlled tower (15 min)
7) Theory revision (10 min)

Materials &
resources

The textbook from the OOP4Fun project.
Resources from OOP4Fun project.
Project source code from Github/Gitlab.
Internet resources.

Description The session starts with students discussing and finding issues related to user
control such as the inability to deselect a tower once selected. Students should
be involved in discussion and propose solutions to track the currently controlled
tower and modify the ManualTower class to include a mechanism to deselect the
tower.

Lastly, a class method changeControlledInstance() should be implemented which
allows changing the control of towers from a centralized method, enhancing
understanding of encapsulation by showing how class methods can manage
shared state across instances.

This comprehensive educational approach teaches the concept of encapsulation,
and it demonstrates its importance and utility in real-world applications,
developing problem-solving and collaborative skills among the students.

Assessment This activity will enable teachers to give formative assessment feedback based
upon the discussions and monitoring of students’ flipped classroom and
teamwork.

The work in the team-project that the students are working on will also use these
learning outcomes and knowledge.

Result
dissemination

In order to disseminate their results to teachers and fellow students the usual
setup of Github/Gitlab and Learning management system (e.g. Moodle will be
used). The students can continue the discussion on the topic on the forum
provided to them via the Learning management tool.

9.2.1. A teacher's Guide to Lesson Preparation

1. Flipped Classroom Session

Objective: Students should recognize the need to initialize an attribute in a single place

Concepts to discuss: class attributes

Activity: At the beginning of the class, let students identify the problem with the user

control. Currently it’s not possible to deselect the tower. Encourage students to think about

how this problem could be resolved. Clarify that in the game only one tower should be

selected at the time.This discussion should lead students to the idea of having one place in

program which is initialized only once and it can be accessed from other parts of the

programs, from other object and actors.

2. Class attributes

Objective: Introduce basics of class attributes

Concepts to discuss: attributes, class attributes, classes

Activity: Explain what class attributes are: variables that belong to the class itself, rather

than instances of the class. Relate this concept to the game scenario discussed earlier,

where having a centralized attribute to manage the currently selected tower could solve

the issue.

3. Task 7.6.: Add evidence of manually controlled tower

Objective: Practical usage of class attributes and null

Concepts to discuss: attributes, class attributes, classes, access modifiers

Activity: To track which tower is currently selected in the game, add private static

attribute-controlledInstance to the ManualTower class and initialize it to null. Static

attribute is related to the whole class, not to an object of a class. Hence, defining a static

variable will allow us to determine whether tower has been selected and, if so, which one,

by referencing the class name, without needing to access aspecific object. The teacher

should emphasize that there is one controlledInstance for the whole game. At the

beginning, controlledInstance should be initialized to null, as there is no selected tower.

Inspect the internal state of class. Here the teacher explains differences between static and

non-static attributes. The teacher with students discuss benefits of using static attributes in

games. Teacher should also mention here static methods and discuss with the students

where using static methods is beneficial.

Commit: c4739460bed583d2126de066acc6b1149d022990

Solution:Add private static attribute controlledInstance to the ManualTower class:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/c4739460bed583d2126de066acc6b1149d022990

Figure 78, Task 7.6

4. Method of class

Objective:Introduce basics of class methods

Concepts to discuss: class methods, class, objects

Activity: Present the concept of class methods that can operate on class-level data.Discuss

the need for methods like changeControlledInstance to manage switching the currently

controlled tower. Emphasize that these methods can be called without needing an instance

of the class. For example, school bell rings for everyone at the same time, it doesn’t matter

who you are, on the other hand, checking a student’s homework requires information

about that specific student.

5. Task 7.7.: Change of manually controlled tower from centralized place

Objective:Practical usage of class methods

Concepts to discuss: methods, class methods, class attributes

Activity: Teacher should add method changeControlledInstance to change manually

controlled tower. Parameter of the method will be the tower user wants to select. First, it

should be checked whether the controlled instance is currently selected. If it is, nothing

should change, but if the passed instance is different than we should change currently

controlled instance (reference to the currently controlled instance should be changed). Test

out the function manually and observe that the icons of the towers don’t change. Point out

that only changing the reference of the controlled instance, wouldn’t change the control

and that it should be done manually. Add the code which releases the currently controlled

instance and, after updating the reference, add code which sets manual control of newly

controlled instance. Highlight the need for checking null references which could appear if

there is no currently controlled instance and if there is no newly controlled instance (when

the parameter is null).

Commit: 9dc6d8dd4dcbbd71edb8009c1a72403dea1a0ee0

Solution:Add new public static method changeControlledInstance(ManualTower) to the

ManualTower class:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/9dc6d8dd4dcbbd71edb8009c1a72403dea1a0ee0

Figure 79. Task 7.7

6. Task 7.8.: Invoke change of manually controlled tower

Objective: Practical usage of class methods

Concepts to discuss: methods, class methods, class attributes

Activity: Manually test out the function whether it works correctly. Afterwards, discuss

with the students where should this function be invoked. Method should be invoked inside

of Arena’s act() function and inside of processUserControll() function. Lastly, make method

ManualTower.changeControl(Boolean) private and observe changes of instance of

ManualTower.

Commit: c052bbb6aa4c7e690d4d8cf55d3831028fa2b9e3

Solution:First, invoke changeControlledInstance(ManualTower) inside of act() method of

the Arena class, this will deselect any currently controlled ManualTower:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/c052bbb6aa4c7e690d4d8cf55d3831028fa2b9e3

Figure 80. Task 7.8 - 1

In method processUserControl() inside of ManualTower class, instead of the

changeControl(boolean) method, invoke ManualTower.changeControlledInstance(ManualTower).

Figure 81. Task 7.8 - 2

7. Theory revision

Summarize the session, highlighting the importance of class attributes and methods in

managing game logic efficiently. Encourage students to explore further by applying these

concepts in their own programming projects.

