

SYLLABUS FOR TEACHING
PROGRAMMING FOLLOWING LIGHT OOP

PRINCIPLES

2

Project Object Oriented Programming for Fun

Project acronym OOP4FUN

Agreement number 2021-1-SK01-KA220-SCH-00027903

Project coordinator Žilinska univerzita v Žiline (Slovakia)

Project partners Sveučilište u Zagrebu (Croatia)

 Srednja škola Ivanec (Croatia)

 Univerzita Pardubice (Czech Republic)

 Gymnazium Pardubice (Czech Republic)

 Obchodna akademia Povazska Bystrica (Slovakia)

 Hochschule fuer Technik und Wirtschaft Dresden (Germany)

 Gymnasium Dresden-Plauen (Germany)

 Univerzitet u Beogradu (Serbia)

 Gimnazija Ivanjica (Serbia)

Year of publication 2023

Disclaimer:
Funded by the European Union. Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

3

Table of contents

1. Information sheet ...6

1.1. Subject annotation ..6

1.2. Subject characteristics ...6

1.3. Aim of the subject ...6

1.4. Learning outcomes ..6

1.5. Material and technical requirements ...6

2. Syllabus principles ...8

3. Projects ... 12

3.1. Bomberman .. 13

3.1.1. Content and scope of the educational program.. 13

3.1.2. Topics .. 14

3.2. Tower defense ... 36

3.2.1. Content and scope of the educational program.. 36

3.2.2. Topics .. 37

3.3. Project ants ... 55

3.3.1. Topics .. 55

4. Bibliography .. 67

5. Attachments ... 68

5.1. Export of learning design for project Bomberman .. 68

5.2. Export of learning design for project Tower defense .. 68

5.3. Export of learning design for project Ants .. 68

4

List of figures

Figure 1: Greenfoot environment with the final state of project Bomberman 13

Figure 2: Learner workload when using project Bomberman ... 14

Figure 3: Greenfoot environment with final state of project Tower defense 36

Figure 4: Learner workload when using project Tower defense ... 37

Figure : Configurations of custom setups of instances to predict movement of instance of class Enemy

 ... 42

Figure : Configurations of tricky setups of instances to predict movement of instance of class Enemy

 ... 42

Figure : UML sequence diagram of instance of class Enemy interacting with other objects when hitting

instance of class Orb ... 46

Figure : UML sequence diagram of instance of class Tower interacting with other objects when creating

instances of class Bullet .. 48

Figure : UML sequence diagram of instance of class Bullet interacting with other objects when hitting

instance of class Enemy .. 49

5

List of tables

Table 1: Constructive alignment of project Bomberman .. 14

Table 2: Constructive alignment of project Tower defense .. 37

Table : Comparision of workloads of topic Greenfoot environment between projects Bomberman and

Tower defense .. 38

Table : Comparision of workloads of topic Class definition between projects Bomberman and Tower

defense ... 39

Table : Comparision of workloads of topic Algorithm between projects Bomberman and Tower defense

 ... 40

Table : Comparision of workloads of topic Algorithm between projects Bomberman and Tower defense

 ... 41

Table : Comparision of workloads of topic Variables and expressions between projects Bomberman

and Tower defense ... 43

Table : Comparision of workloads of topic Association between projects Bomberman and Tower

defense ... 45

Table : Comparision of workloads of topic Inheritance between projects Bomberman and Tower

defense ... 50

Table 10: Comparision of workloads of topic Encapsulation between projects Bomberman and Tower

defense ... 53

Table 11: Comparision of workloads of topic 1 between projects Bomberman and Ants 56

Table 12: Comparision of workloads of topic Class definition and basic work with classes between

projects Bomberman and Ants .. 56

Table 13: Comparision of workloads of topic Encapsulation, composition, methods between projects

Ants and similar topic in Bomberman - Encapsulation ... 58

Table 14: Comparision of workloads of topic Constructors, more complex method calls (working with

graphic in Greenfoot) between projects Ants and similar topic in project Bomberman, that is covered

in topic Algorithm ... 59

Table 15: Comparision of workloads of topic Branching, conditional execution between projects

Bomberman and Ants ... 60

Table 16: Comparision of workloads of topic Algorithm, enumerations, arrays in project Ants and

similar topic in projects Bomberman - Lists ... 61

Table 17: Comparision of workloads of topic Handling user input, Game logic in project Ants and similar

topic in project Bomberman - Algorithm ... 64

6

1. Information sheet

1.1. Subject annotation
The aim of the course is to teach students to solve programming tasks using basics of object-oriented

programming (OOP) following light OOP paradigm. Students will learn to split given tasks among

cooperating objects; to determine their competencies; and to implement designed model. The course

does not require previous programming skills. It is taught in Java programming language. The course

explains light OOP concepts (such as encapsulation, inheritance, or association) on the creation of

computer games, where these concepts are simply and intuitively utilized. The process of creating a

computer game is based on teamwork and practically utilizes knowledge and skills from other areas of

informatics and to it related subjects (work with multimedia and office software). The design of every

computer game is open enough for students to expand the game individually and creatively. Moreover,

the design leads to the proper utilization of acquired knowledge.

1.2. Subject characteristics
Subject is focused to introduce innovative approach to teach programming, based on the solving of

tasks using the object-oriented programming (OOP) paradigm. OOP is nowadays the dominant

paradigm for application development. Therefore, it is proper for students to possess the knowledge

and skills in this area. The subject presents development environment that utilizes different forms of

source code editing (frame-based editing using simplified form as well as real source code writing)

what makes it possible to teach students on different levels of prior technical knowledge and activity.

With its simplicity and clarity this tool supports quick and intuitive comprehension of taught topics

what has positive influence on students and their motivation.

1.3. Aim of the subject
Via programming of interactive games in graphical environment, the student will gain knowledge and

skills, so that student will be able to:

• identify a problem,

• identify suitable objects to solve identified problem (object decomposition),

• design classes of objects, as well as their attributes and methods,

• identify and properly utilize objects relationships (association, inheritance),

• design an algorithm to solve problem and distribute it among cooperative objects,

• use source code elements (branching, loops) to implement designed algorithm,

• effectively use means for source code debugging,

• create simple application with graphical interface in the Greenfoot environment.

1.4. Learning outcomes
Learning outcomes of the subject are summarized as follows:

• understanding the basic principles of object-oriented programming,

• understanding the basics of algorithmization,

• understanding the syntax of the Java programming language,

• analyzing program execution based on the source code,

• the ability of creating own programs with the use of OOP.

1.5. Material and technical requirements
PC classroom containing separate workspace for every student plus workspace for teacher. Workspace

is considered as table, chair, personal computer (PC). All workspaces should be connected to LAN

network with access to internet (recommended).

7

PC should meet following minimal requirements:

• operating system (either Microsoft Windows 7 or later, Linux (Debian), Mac OS 10.10 or later),

• office software with text, table and presentation editor (e.g. Microsoft Office, Libre Office,

Open Office),

• java SE Development Kit (JDK),

• Greenfoot environment (version 3.8 or later),

• simple graphical software,

• web browser (e.g. Edge, Google Chrome, Mozilla Firefox, Opera),

• relevant software for other PC hardware.

8

2. Syllabus principles
Proposed syllabus is designed to tackle problems identified in PR1 and PR2 (see chapter “Aligning

results with PR1 results” in PR2 report). In the following table we present perspective on curriculum

development, learning outcomes, teaching materials and teaching activities as proposed in PR2.

Following these findings, we were able to formulate syllabus principles.

PR2 findings PR3 syllabus principles

In high schools, OOP should be introduced by

topics covering basic programming concepts in

the beginning and narrower topics related to

OOP would be more appropriate in separate

courses.

It is crucial to connect and encourage

information exchange between school and

university teachers, with the involvement of

policymakers who define curricula related to

programming skills at all educational levels.

From a course/instructor perspective and from a
course design perspective, the following
innovative forms of instruction/knowledge
transfer should be used: Blended learning,
learning-by-doing, problem solving,
collaborative problem, teamwork, problem-
based learning, active learning, lab-based
learning. In addition, various forms of innovative
approaches should be applied in lectures,
seminars, and laboratory exercises.

Games and gamification in general were
frequently used to motivate students to
program. Students liked the opportunity to be
creative or to compete for knowledge when
supported by an appropriate setting. From the
results of the literature review, three different
types of learning through games were
suggested: learning by playing, learning by
creating games, learning by using game-related
tools and learning with gamification.

Syllabus must properly utilize OOP from the very
beginning following object first approach. The
suitable level of OOP for high schools has been
identified and formulated as light OOP. Light
OOP can be with benefits used when creating
games, since it is easy to identify the objects of
the game as well as objects’ competencies and
properties.

To motivate students using games it is important
to make students interested in the games. There
should be created several game-based projects
with different mechanics to fulfill this goal.

Moreover, several games that will be prepared
will allow to:

• create different teaching materials
targeting different teaching conditions
(online/onsite, intensive/whole year
course, beginner/advanced students).
This is a key property for upcoming
project results,

• build one game with the teacher present
and other games as home assignments
(teacher will be able to see if students
can apply knowledge in different
context),

• build a game according to given
instructions with minimal teacher’s
interaction, so that students will
understand importance of well written
technical description and they will apply
learned skills to create game as
specified,

• introduce a new light OOP concept as
game introduces new mechanics. This
will make it possible to stop
development of the project if the
teacher decides to cover subset of light
OOP because of nation specifics.

For learning and teaching of OOP concepts,
learning by creating the games showed the
significant effects for improving students
problem solving skills and engaging them in a fun
and entertaining environment.

As several PR2 outputs point out, the main goal
should be to incorporate learning and teaching
tasks into stimulating and entertaining activities

Projects will be built using learning by doing
principle. We try to minimize the theory

 9

that will have a positive impact on higher
attendance and completion rates. This would
increase the interest of high school students for
programming in general and eventually lead to
better understanding of programming and OOP
concepts. In that case students would not be
“lost” when faced with university curricula.

explanation and support investigation, practice,
and production aspects of learning.

Working in groups encourages students that
may struggle in the beginning. If the project is
developed in a group, agile methods of
development as well as teaching can be used.

Before implementation, the teacher may decide
to use analytical and design phase of the project.
This will make it possible to utilize knowledge
and skills of students gained in previous
lectures/courses as well as to engage students in
project development. Students may be asked to:

• work with information sources to find
proper game,

• formulate game rules and/or
requirements on their application
(either in the oral or written form),

• prepare multimedia (images/sounds).

The overall goal of PR2 was to find appropriate
and innovative learning and teaching ideas and
approaches that would solve these issues. As
mentioned in the previous chapters1 there are
several identified good practices that could be
used to improve the achievement of learning
outcomes during the high school education.
However, it should be noted as well that
curriculum redesign should result in introduction
of OOP topics and set goals in achieving OOP
related learning outcomes as well.
It is also important to select an appropriate type
of assessment: (online) questionnaires are the
only accepted method for assessing students'
enjoyment, usefulness, interest, engagement,
and simplification of programming and OOP
concepts which will be defined on the high-
school and not on university level.

With focus on learning by doing principle we
tried to minimize acquisition type of activities
and to strengthen the investigation part.
Projects will be built in a way that enables simple
expansion, so motivated students will be capable
of working on the projects by themselves.

To validate the proposed curriculum, we will
prepare learning design for every project. Then
we will compare analytical output of new
projects utilizing light OOP with analytical output
of learning design built for project that was
developed in past and is already deployed in
praxis in Slovakia (among other schools in
country, it is used by project partner Obchodna
akademia Povazska Bystrica) and Czech Republic
(used by project partner Gymnazium Pardubice).
Positive feedback for this validated project has
been published in PR2, therefore we assume
that following the same best principles and
practices, we will transfer positive acceptance of
proposed curriculum.

By using teamwork in OOP assignments,
students would have the opportunity to share
their knowledge and transfer the
implementation of basic programming concepts
to other students (peer-to-peer learning).

When designing here proposed game-based
projects, we kept in mind utilization of different
techniques, such as EduScrum. For this reason,
we deliver each project in the form of GIT
repository and supply proper knowledge to
teachers. While it is not limited to utilize this
approach and teachers may still use traditional

This project’s results will yield a set of materials
which will give a chance to highly motivated

1 See previous chapters of PR2 report

10

students with solid prior-knowledge to increase
that knowledge through different activities and
roles. Such students could significantly improve
the overall achievements of the whole group if
they will be given a chance to share the
knowledge or to lead the teams.

approach, using agile techniques will lead to
teach:

• Basics of versioning systems - we
suggest GIT as the most utilized
versioning system, using versioning
system makes it easy to

o share source codes and
o develop new features of the

games, without impact on the
flow of the project (e.g. in a
separate branch), what will
motivate ambitious students.

• Teamwork – each student will be
responsible for the specific aspect of a
game leading to the necessity of
effective communication between team
members.

• Time management – individual parts of
the projects will have to be delivered on
time in order to merge them and
continue with other work, however,
proper use of versioning system and
OOP open many possibilities to deal with
time struggles what may lead to positive
motivation of students even during hard
times.

We will realize multiplier events with teachers
covering both introduction to GIT as well as the
utilization of principles of agile software
development in teaching. Students will form
project teams, with specific roles, they will share
ideas on stand-ups, give and assign themselves
goals, they will realize sprints, create
documentation and other artefacts and they will
present their solution.

Use of more different tools and programming
languages in earlier years of study should be
encouraged. Programming concepts could be
simplified using visualization tools. Although
some countries have already introduced the use
of some tools like Logo or Scratch, these are
interesting to elementary schools but not to high
schools. Thus, more advanced tools that are
designed to support OOP should be used. We
have recognized that Alice and Greenfoot stand
out among other tools.

We use Greenfoot environment that utilizes Java
programming language. Java is currently very
popular and in praxis widely used programming
language.

Moreover, the Greenfoot presents the frame-
based source code editor using Stride language.
This opens possibilities for teachers who will
want to use in this syllabus presented techniques
with students of younger age.

Greenfoot is very visual and from the beginning
it makes it possible to create a visualized object,
that is “alive” and can be interacted with.
Therefore, the theoretical introduction is

11

minimized, and students will start working from
the very beginning.

As students reported, for teaching programming
it is important that teachers use novel and up-to-
date teaching materials and employ creative
teaching methods. Also, the teacher's availability
and flexibility to work with students outside the
classroom is necessary to motivate students and
generate greater interest in the subject.

Using presented principles, we create modern
syllabus for teachers that will cover light OOP
topics and is based on project work and
genuinely utilizes object first approach. We
propose several game-based projects, each
delivered in the form of GIT repository. For every
project there is created learning design what
made it possible to validate these projects with
already in praxis utilized and positively admitted
approach.

The content and scope of the educational program differ with regards to the game project developed

during classes. For detailed analysis refer to respective learning design and to attached files of analysis.

12

3. Projects
With regards to the syllabus principles there have been created two game projects that properly utilize

object-first and learning by doing principles. Moreover, we processed project Bomberman, that was a

backbone project of national project IT Academy, that is used in praxis in Slovakia. We use this project

for validation of proposed projects. Organization of all project chapters is as follows.

• Project description – the basic description of the game with screenshot of the finished

application and summarized game rules. Project description also presents the connection to

the light OOP topics.

• Link to source codes – source codes are organized in the form of GIT [1] repository. Using

properly managed repository introduces the teacher to use the modern approach of source

code management. We have used GIT as a versioning system that is among the most popular

in recent years [2]. GIT also enables us to use cloud-based repositories, such as GitHub [3] or

GitLab [4], that are free and offer to use many tools to enhance team collaboration. Every

repository is organized as follows:

• Branch per topic – tasks of every topic from the syllabus are developed in dedicated

branch. Master branch contains only initialization commit and merges of topic

branches.

• Commit per task – every task that is oriented to produce/modify source code is in the

form of commit. Description of commit matches respective task’s number.

• Link to learning design – syllabus is built in the form of learning design. Learning design enables

us to define learning outcomes (that cover necessary competencies identified in PR1 and PR2)

and associate them with topics (see the connection to the branches of respective GIT

repository). The topics are organized into units that are composed of the TLAs (see connection

to the commits in respective GIT repository). Using learning design makes it possible to analyze

the time allocation what is directly connected to the validation of declared learning-by-doing

principle. Since the learning design was processed also for already established and in

pedagogical praxis used project (Bomberman), it makes it possible to identify the potential

problems in design. To be able to perform validation, the projects are organized into topics in

the same way.

• Covered topics of light OOP.

• Content and scope of the educational program – overview of learner workload in specific

learning type as well as overview of contribution of topics to individual learning outcomes.

• List of topics. Every topic contains:

• brief description,

• comparison of learning designs,

• list of tasks.

13

3.1. Bomberman
Bomberman is a fairly well-known multiplayer game. The game takes place in an arena that contains

the players as well as some fixed obstacles. The player can plant bombs that explode after a certain

amount of time. The aim of the game is to eliminate the opponents by using bombs. Some of the

obstacles in the arena can be destroyed using bombs. After destroying an obstacle, a random bonus

can appear in the game, which for example increases the speed or power of the player's bombs. The

game ends if there is only one player left in the game, in which case that player wins, or if there are no

players left in the game, in which case the game ends in a draw.

The Bomberman project covers most of the topics of light OOP. It focuses on the main aspects of the

OOP which are summarized in the topics below. Furthermore, it introduces some topics reaching

beyond light OOP such as generating and using random values using the Random class.

Figure 1: Greenfoot environment with the final state of project Bomberman

Source codes are available at:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman

Bomberman project is specific in a way that it contains commits that include work that is to be done

in between two consecutive tasks. Such commits are described using messages of the form “Code X.Y”,

where X is the number of the topic and Y is the number of intermediate task within given topic. In the

text, the commits are labeled as “Intermediate commit”.

Learning design is available at:

https://learning-design.eu/en/preview/70bcf65d805b0603f6c1aeab/details

3.1.1. Content and scope of the educational program
Overall learner workload is 49h 30min and is distributed as follows:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman
https://learning-design.eu/en/preview/70bcf65d805b0603f6c1aeab/details

14

Figure 2: Learner workload when using project Bomberman

Constructive alignment is summarized in table below:

Table 1: Constructive alignment of project Bomberman

For a detailed plan refer to attachment 5.1.

3.1.2. Topics
Project Bomberman is divided into ten topics:

1. Introduction to Greenfoot environment ... 15

2. Algorithm, application controls, method creation ... 16

3. Branching and player ... 17

4. Variables, expressions, and advanced player control .. 19

5. Object and class cooperation .. 21

6. Inheritance and for loop ... 23

7. List and for each loop ... 26

8. Private methods and while loop ... 27

9. Polymorphism .. 31

10. Random numbers ... 33

Covered topics of light OOP are:

15

• classes, objects, instance

• methods, passing methods arguments

• constructors

• attributes

• encapsulation

• inheritance

• abstract classes

• object live cycle

1. Introduction to Greenfoot environment

The topic is devoted to basic project setup. Students will learn how to set the dimensions and

appearance of the environment, create a class (as a subclass of the Actor class), create its instance,

send it a message, and observe its internal state.

Commit: 84de89768134d119dbe94017fe477152c4307b61

1.1. Identify objects

Identify objects in your surroundings and list their properties and actions that they can perform. Can

you identify objects that have no properties? Can you identify objects that can do nothing? Can you

identify immaterial objects (ones that we can't physically touch)?

1.2. Validate object hierarchy

The following figure shows the hierarchy of the Square and Rectangle classes. Is this a good hierarchy?

1.3. Create a simple hierarchy

Create a class hierarchy of:

a) means of transport,

b) animals,

c) and computer parts.

List the properties that each class defines. List the properties defined by each class. Which classes are

non-material in the design, so we cannot touch them? We will call such classes abstract in the future.

1.4. Create a tile

In a graphical editor, create a tile that will graphically represent a cell of the world. Select square

representation, ideally 60x60 pixels. Import or save the image in the project folder in the images

folder. Set the image as the world image. This is done by right-clicking on MyWorld and selecting Set

image... . Note that the MyWorld class has been given a small icon in the class diagram to represent

its graphical form.

Commit: 5eeecea8bbff323caab71d0a25068d596891d447

1.5. Create the world

Modify the MyWorld class constructor to create a 25x15 cell world, with each cell being 60 pixels in

size. How would the image need to be modified to make the world look like a chessboard (i.e., with

alternating different colored squares)?

Commit: 86da438686edad7900e8e11f595917f49209d346

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/84de89768134d119dbe94017fe477152c4307b61
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/5eeecea8bbff323caab71d0a25068d596891d447
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/86da438686edad7900e8e11f595917f49209d346

16

Next, create a Player class. This is done by right clicking on the Actor class and selecting the New

subclass.... Name the subclass Player and select its image from the library. Again, notice the small

icon next to the Player class similar to the MyWorld class. To create an instance of the Player class,

right-click on the Player class, select new Player, and move the icon with the player to the

background of the world. Left-click to place the instance. To view the status of an instance, right-click

it and select Inspect.

Intermediate commit: 316e48b29455649483c53080c6f5d49d74cf09c3

1.6. Inspect player state

Grab the created instance of the Player class with the mouse and move it to another position in the

world. Watch a live view of the internal state – what do you see? Create another instance of the Player

class and view its internal state as well. Again, drag one of the two instances with the mouse – which

internal state has changed?

1.7. Interact with players

Call the methods provided by the Greenfoot environment over different instances of the Player class.

To do this, left-click on the instance and select, for example, the method void move(int). When

prompted, enter an integer. Observe how the internal state of the instance changes.

2. Algorithm, application controls, method creation

This topic covers the creation of public methods that move the player in the world. It also introduces

Greenfoot environment tools that control the execution of the scenario.

2.1. Write a simple algorithm

Write down the procedure, how to prepare coffee, how to travel to school, and how to cook lunch.

2.2. Write a more general algorithm

Make a general algorithm for the preparation of a hot drink. Think about what the inputs of such an

algorithm need to be for it to be general.

2.3. Inspect a class instance

Explore the methods of the Player class instance. To do this, right-click on the class and select Open

Editor. What do you observe? By analogy to the act() method, add the makeLongStep() method.

Intermediate commit: 13b7cca1040b3e1783a8819552d904a05f732817

2.4. Implement a method

Add a statement to the body of the makeLongStep() method such that the instance of the Player class

is moved by two cells in the current direction. Then create multiple instances of the Player class and

invoke this method on each instance. Is the behavior expected?

Commit: e678e104ec9b3bac0cc52a11f0a897548cdb5e82

2.5. Add documentation

Add a documentation comment for the makeLongStep() method.

Commit: 5c04e53c250331bdbf98a01d0c97c722486f8c79

2.6. Add more documentation

Edit the documentation comment of the Player class. Add the version of the class and its author.

Commit: 943aedd847dd93796f5a63af824e0556f45b208f

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/316e48b29455649483c53080c6f5d49d74cf09c3
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/13b7cca1040b3e1783a8819552d904a05f732817
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/e678e104ec9b3bac0cc52a11f0a897548cdb5e82
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/5c04e53c250331bdbf98a01d0c97c722486f8c79
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/943aedd847dd93796f5a63af824e0556f45b208f

17

2.7. Read the documentation

Explore the documentation window.

2.8. Add player action

Modify the body of the act() method of the Player class to call the makeLongStep() method.

Commit: 24fca7f90c940830674d9ee51c28988119a18d83

2.9. Explore application controls

Try the buttons that control the app. Create multiple instances of the Player class. Press the Act

button – what happens? Press the Run button – what happens? After the first press of the Run button

press the Pause button, what happens? What effect does the Speed slider have on the act() method

call after the Run button is pressed? What happens, when you press the Reset button?

2.10. Add another player action

Add a method to the Player class that will walk an instance of the Player class in a square. Document

your method. Use appropriate methods from the Actor base class to move and rotate. Modify the

act() method so that an instance of the Actor class walks in a square when it is called. Then verify

your solution by running your application.

Commit: 4721b0e7cceaa883d242d0011485cb9a0ca1d742

3. Branching and player control

This topic introduces students to branching in the form of if-else statement and switch statement.

The branching is used in the detection of the edges of the world and collisions with walls – which are

new objects added to this topic.

The following intermediate commit shows a modification to the act() method to make an instance of

the Player class move one field and rotate when it contacts the world edge.

Intermediate commit: cd358b49452e8fb3342aba073651fa969a56b275

3.1. Move the player

Modify the code of the act() method in the Player class so that the player only moves when the M

key is pressed (M as a move). Keep the code responsible for turning the player when it reaches the edge

of the world but think about its location. When can a player turn be performed?

Commit: 9d254e0bf2a4c49bd82fd15858d7a3104ab201c7

3.2. Observe the player's state

Create an instance of the Player class and place it in the center of the board. Open a window with the

internal state of the instance and position it so that it is visible while the application is running. Then

run the application and observe how the values of the x and y attributes in the Player class change.

How do these values change as you move up, down, left, and right? Use different values for the

setRotation() method (0, 90, 180,270) try to replace the isAtEdge() method with the getX() and

getY() methods.

Intermediate commit: f28065cf775055bdd9fc41757af31b818fb76552

3.3. Add world edge detection

Add code to the body of the act() method to properly rotate the player after reaching the bottom

and left edges of the world.

Commit: 1dba08bd12adbf8288087c1957192f8d58745b6e

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/24fca7f90c940830674d9ee51c28988119a18d83
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/4721b0e7cceaa883d242d0011485cb9a0ca1d742
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/cd358b49452e8fb3342aba073651fa969a56b275
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/9d254e0bf2a4c49bd82fd15858d7a3104ab201c7
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f28065cf775055bdd9fc41757af31b818fb76552
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/1dba08bd12adbf8288087c1957192f8d58745b6e

18

3.4. Add walls

Create two new classes as subclasses of the Actor class. The first class will be BrickWall class, and

the second class will be Wall. Prepare suitable 60x60 pixel images in a graphical editor. Then assign

these images to the newly created classes.

Commit: ce0c50360a562e2a58592ca68b8a2ac83aa98c10

3.5. Observe the player's movement

Create four instances of the BrickWall class and one instance of the Player class as shown in the

figure below. Guess how the player will move? Run the application. Does your prediction match what

you observe?

3.6. Add wall collision detection

Add code to the act() method of the Player class to ensure that the player turns 90°

counterclockwise when he enters a cell that contains an instance of the Wall class.

Commit: 8dd56c9f4ebb1ece0037eff1a4f8a1efc6425048

In the following intermediate commit, the behavior of the Player class is modified. Full branching is

used and additional conditions are added. Consider how an instance of the Player class behaves if it

enters a cell that contains an instance of the Wall class.

Intermediate commit: 61415cb24c76a38280e3d82a9a5cf5104d72c5e9

3.7. Predict player movement

Predict how an instance of the Player class will move. Does the result agree with your prediction?

3.8. Observe edge detection

Place one instance of the Player class in the corners of the world. Predict how this instance will move

when the application is started. Does the result agree with your prediction?

3.9. Finish wall collision handling

Complete the cascade of conditions so that touching an instance of the BrickWall class and the Wall

class is checked only if the player is not on the edges of the world. Check the instance of the BrickWall

class first.

Commit: 6f1af5aecda75e6b9a0198b3ee01f22cca4ad182

3.10. Move the player automatically

Create a method to automatically move an instance of the Player class. Move all code from the act()

method into the new method. The method identifier can be, for example, moveAutomatically.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/ce0c50360a562e2a58592ca68b8a2ac83aa98c10
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/8dd56c9f4ebb1ece0037eff1a4f8a1efc6425048
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/61415cb24c76a38280e3d82a9a5cf5104d72c5e9
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/6f1af5aecda75e6b9a0198b3ee01f22cca4ad182

19

Commit: 52c3706bf61f43e9db82835a5d09274fdff1efc7

3.11. Move the player using arrows

Create a moveUsingArrows() method in the Player class. Program this method so that the player

only moves when an arrow is pressed. It will move in the direction of the pressed arrow. Take care to

keep the code efficient. In the act() method, call the new method.

Commit: 97e02be7423c9da1ea466547c944b9d58a26fa60

3.12. Prepare images

Prepare four images for the player to move up, down, left, and right. The dimensions of the images

must not exceed the dimensions of the cell, in our case 60x60 pixels. Place the prepared images in the

images directory.

Commit: 08df8b3d3224ddead2c54859b3734e5de6455acf

3.13. Use the images

Create an updateImage() method that changes the player's image according to his current rotation.

Add a call to this method to the body of the act() method. The following commit shows the possibility

of using switch statements in branching, as an alternative to if-else.

Commit: c564ef0bf67120d3b846b0014a5dd1e24c779dec

3.14. Run the application

Start the app. Notice that the images are adjusting, but they rotate according to how the player is

rotated. Solve this problem.

Commit: 81f3be530f0acd454bbe1a0215357628086d547c

3.15. Use more players

Try creating multiple players and controlling them using the keyboard. What do you observe?

4. Variables, expressions, and advanced player control

This topic deals with the introduction of variables in the form of class attributes and method

parameters. Students will use the attributes to control the speed of the player as well as setting specific

keys that control the movement of a player. This will allow the game to have multiple players each

controlled by different keys.

4.1. Spot the difference

What is the difference between the following algorithms?

1. int a;

boolean c;

...
if(a > 0){c = true;}

if(a < 0){c = false;}

2. int a;

boolean c;

...

if(a > 0){c = true;}
else {c = false;}

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/52c3706bf61f43e9db82835a5d09274fdff1efc7
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/97e02be7423c9da1ea466547c944b9d58a26fa60
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/08df8b3d3224ddead2c54859b3734e5de6455acf
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/c564ef0bf67120d3b846b0014a5dd1e24c779dec
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/81f3be530f0acd454bbe1a0215357628086d547c

20

4.2. Write simple expressions

Write an expression using Boolean and relational operators to express that a variable of type int a has

a value belonging to the following intervals: <-10,10), (5,142), (-11,-3) OR (1,25>.

4.3. Evaluate expressions

Choose the values of the variables x and y and add them to the expressions. What will be the values

of the variables b1 and b2 in each case (1 and 2)?

1. int x, y;

...

boolean b1 = x > 0 && y == 1;
boolean b2 = x <= 0 || y <= 0;

2. int x, y;

...
boolean b1 = (x > 0) && (y == 1);

boolean b2 = (x <= 0) || (y <= 0);

Intermediate commit: 775935e5d09d4db8b5b41ea27d35b0595cfbdb3b

The previous intermediate commit modifies the Player class. It adds String attributes upKey,

downKey, rightKey and leftKey. These will be the keys that will be used to control the movement of

an instance of the Player class. The keyword private means that the attributes will only be available

within the Player class. Within this class, the attributes will be accessed via the word this (i.e., an

instance of this class), i.e., this.upKey, this.downKey, this.rightKey, and this.leftKey Further,

it modifies the moveUsingArrows() method by causing the "left" key to be replaced by the

this.leftKey attribute. The other keys are similarly replaced. The keys to control the movement of a

given instance must be specified when the instance is created. To do this, a constructor must be

created. This is a special method for creating an instance of a given class, which is executed when it is

created. The constructor again has four parameters - upKey, downKey, rightKey and leftKey. Inside

the constructor, you need to distinguish between leftKey and this.leftKey. The former is a

parameter of the constructor and the latter is an attribute of the instance of the class. The constructor

is not mandatory within the class. If we don't implement it, the default with empty code will be used.

4.4. Test the constructor

Test the constructor and the modified method for controlling player movement by inserting two

instances of the Player class into the world. For each instance in the dialog, set different keys to

control its movement. Test to see if the inserted players can be controlled independently.

4.5. Rename a class

Rename the MyWorld class to the Arena class. Note that the constructor name must be the same as

the class name. Test how the Greenfoot environment behaves if it is not.

Commit: 7f85bea606e71344e376ab7519be3082fec0ee7c

Until now, it was always necessary to manually add instances of the class, which disappeared after

clicking the Reset button. This is because there are no instances created in the constructor of the

Arena class. In the following intermediate commit, the Arena class attribute player1 of type Player

is created. By being private, it is only available within the Arena class. It is then created using new

and placed at the specified position using the addObject method. Let's add that the keyword new

triggers the constructor of the class.

Intermediate commit: d816af6e4f043848d4ef16ac96c80134354d974b

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/775935e5d09d4db8b5b41ea27d35b0595cfbdb3b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/7f85bea606e71344e376ab7519be3082fec0ee7c
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/d816af6e4f043848d4ef16ac96c80134354d974b

21

4.6. Add one more player

Add another player to the world, for example by using a player2 reference attribute, which will be

controlled by the w – up, s – down, d – right, and a – left keys. Place the player at coordinates [24,14].

Once added, test the controls.

Commit: b69a02f684f702ef963c6adfa08bd8eecc7fd61f

4.7. Reference attributes

What would happen if we made the assignment this.player1 = this.player2; after creating both

players? Would that be a problem?

4.8. Extend the player class

Extend the Player class with an additional attribute of type int representing the player's step size.

Here two constructors are used, differing in the number of parameters. This is the so-called overloaded

constructor. The one with the same parameters is always used.

Commit: 6b4c1680a7ea0b4a690d1671869436ca8e5a27ce

4.9. Integrate step size

Modify the moveUsingKeys() method to respect the new attribute step size. Create a new instance of

the Player class and test the functionality of the program.

Commit: f6bc391828f6b3a08a58d28a9d89b5a7d75eb003

4.10. Make players move at different speeds

Your task is to ensure that the player moves one cell at a time but at different speeds. Each player can

have a different speed. As a hint, you can program different movement speeds by, for example, not

moving the player every time a key press is detected (we do the detection in the act() method, so if

you hold down a key, you will detect its press every time it is executed), but only on every N-th time it

is executed. The larger the N, the lower the player's speed will be. How do you enter N? Where do you

store it? How will you know how many keystrokes have elapsed? (Hint: a counter is also needed).

Commit: 395bc78a6d243dcd1f471c385e6d010718cc6e44

5. Object and class cooperation

The main focus of this topic is object collaboration. In this topic, students will add interaction between

objects in the arena to the project – for example, making sure that the player cannot walk through the

walls. Furthermore, in this topic, students will also add a bomb object – one of the main parts of the

Bomberman game – to the project.

Intermediate commit: a23230234d7709456beaf7ec1cc3f1c3150fc108

5.1. Add code for the vertical movement

Analogously, add the code for the up and down directions in the same way (so you will change the

value of the local variable y).

Commit: 369070027d0d2eec7e045181e35a3705a9dda367

Local variables will be important as parameters of the canEnter() method prepared in the following

intermediate commit.

Intermediate commit: 3c80533a5a872785cbbd29c3cf1ad4c57f098611

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/b69a02f684f702ef963c6adfa08bd8eecc7fd61f
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/6b4c1680a7ea0b4a690d1671869436ca8e5a27ce
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f6bc391828f6b3a08a58d28a9d89b5a7d75eb003
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/395bc78a6d243dcd1f471c385e6d010718cc6e44
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/a23230234d7709456beaf7ec1cc3f1c3150fc108
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/369070027d0d2eec7e045181e35a3705a9dda367
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/3c80533a5a872785cbbd29c3cf1ad4c57f098611

22

5.2. Verify movement possibility

Modify the method that ensures player movement (moveUsingArrows) to verify the possibility of

entering the target cell before changing the player's position.

Commit: 4edb51253991482e1ca431fcb158fefa2eac9de2

In the following intermediate commit, the canEnter() method is created.

Intermediate commit: 59d511f7170e1c56c97294c65ffbecd32665879d

5.3. Consider the brick walls

Modify the canEnter() method so that the player also reacts to instances of class BrickWall and

cannot pass through them.

Commit: a4757d9ccd7cbc8d5b0241515f268519358e3f61

5.4. Add a bomb

Create a new Bomb class, and design its attributes to represent the force of the explosion. Create a

parametric constructor and initialize the attributes of the object.

Commit: 45fe4733e5ffeb58fee0fe2bc9e1d4af8322b0d4

The following intermediate commit adds a bomb placement key to the Player class. It also adds an

attribute for the bomb power of the bomb placement object instance - bombPower. Thus, a constructor

modification is also required.

Intermediate commit: f014c7b3c13416f0f27ae4cbb4c27b039f23f944

5.5. Check bomb planting possibility

Add a canPlantBomb() method to the Player class with a return value of type boolean, which returns

a flag telling whether it is possible to place a bomb on the cell where the player is currently standing.

A bomb can be placed when the appropriate key is pressed and there is no other bomb on the cell.

Commit: ae731b4078f9e4dc19aca31f63badaf068010016

The following intermediate commit adds the timer and owner attributes to the Bomb class. The timer

represents the time it takes for the bomb to explode. Therefore, the constructor of the Bomb class must

be modified. The act() method modifies the behavior of the bomb. When the timer expires, the bomb

explodes and disappears from the world. Furthermore, the Player class is modified. A bombCount

attribute is added to represent the number of bombs that an instance of the Player class can use.

When a bomb is placed, it decreases by 1. When a bomb explodes, it increases by 1. This is handled by

the bombExploded() method.

Intermediate commit: fc8486d412a7c621d2a1796979d110b3b9a7167d

5.6. Add sound effects

Extend the game so that the bomb explosion is accompanied by a sound effect. The sound can be

recorded or downloaded from the internet. Find the command to play the sound in the Greenfoot class

documentation.

Commit: 90da644a58a204eb4de5fb2abab8476c94d73a7c

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/4edb51253991482e1ca431fcb158fefa2eac9de2
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/59d511f7170e1c56c97294c65ffbecd32665879d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/a4757d9ccd7cbc8d5b0241515f268519358e3f61
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/45fe4733e5ffeb58fee0fe2bc9e1d4af8322b0d4
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f014c7b3c13416f0f27ae4cbb4c27b039f23f944
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/ae731b4078f9e4dc19aca31f63badaf068010016
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/fc8486d412a7c621d2a1796979d110b3b9a7167d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/90da644a58a204eb4de5fb2abab8476c94d73a7c

23

6. Inheritance and for loop

This topic deals with the introduction of inheritance. The students create a superclass for the classes

Wall and BrickWall. Then they will create a test arena as a subclass of the Arena class. Finally, this

section focuses on loops with a fixed number of repetitions.

6.1. Add an ancestor class

Create a class Obstacle. Which class is the superclass of the Obstacle class? Edit the headers of

classes BrickWall and Wall so that they are subclasses of the Obstacle class.

Commit: bb77f8893773fec2853c9518fa1025cf2d6d24e2

6.2. Simplify the occupancy test

After adding the Obstacle superclass, it is easier to test if the player can enter a given cell. In its

getObjectsAt() method, the world requires as a third parameter a class to look for on a given cell.

Since both BrickWall and Wall are Obstacle, it is possible to treat them uniformly. Modify the

canEnter() method in the Player class to use only a single list of obstacles.

Commit: c3be615a5a3f5f9992f47068d9c5f6d335e52b93

The following intermediate commit shows the creation of the TestArena class as a subclass of the

Arena class.

Intermediate commit: ba2f48e3a8f38503342d26e9dbae6e3a68f1e2ae

6.3. Modify the arena class

Modify the Arena class so that its constructor has two parameters representing width and height.

Modify the call to the superclass constructor in the Arena class to take these parameters. Notice, that

Arena cannot be automatically constructed by Greenfoot, since it needs parameters for constructor

Remove from this constructor the code responsible for creating and placing players in the arena, this

will be done by subclasses. You can also remove the declaration of attributes of type Player from the

Arena class.

Commit: 9477fb9718f0269d4025491d9160ad37da8636b7

6.4. Fix the TestArena class

Modify the constructor of the TestArena class to create an empty arena with a size of 7x7 cells. To

verify, create an instance of the TestArena class – from context menu of class TestArena select item

new TestArena().

Commit: 1a27ff1e964c1a2f5820d14b65bc7850562acd01

6.5. Add dimension query

Add a showDimensions() method to the TestArena class that prints the arena dimensions to the

screen.

Commit: 49cf3931d68f1d3a18df0a7207a2802b90ef54e5

6.6. Add another dimension query

Add a showDimensions() method to the Player class that will display the dimensions of the arena if

it is in the test arena – class TestArena. Use the showDimensions() method of the TestArena class.

Commit: c5b1e10011483e325271b3a2b101cfbf369f1f44

6.7. Add walls to the test arena

Modify the constructor of the TestArena class to create a 7x7 cell arena with walls laid out as follows:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/bb77f8893773fec2853c9518fa1025cf2d6d24e2
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/c3be615a5a3f5f9992f47068d9c5f6d335e52b93
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/ba2f48e3a8f38503342d26e9dbae6e3a68f1e2ae
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/9477fb9718f0269d4025491d9160ad37da8636b7
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/1a27ff1e964c1a2f5820d14b65bc7850562acd01
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/49cf3931d68f1d3a18df0a7207a2802b90ef54e5
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/c5b1e10011483e325271b3a2b101cfbf369f1f44

24

Recall that we can use the addObject() method of the World class, which has three parameters, to

insert an instance of the Actor class into the world (i.e. into the descendants of the World class and,

in our case, the Arena class):

• an actor to be inserted,

• x-coordinate of the cell to be inserted (i.e. column index numbered from 0),

• y-coordinate of the cell to be inserted (i.e. the row index numbered from 0)

The [0;0] position in the world is at the top left. Since we want to add five instances of the Wall class

at once, we use a for loop that repeats the statements inside the block for all i=1,2,3,4,5 in our

case. Recall that super is a call to the constructor of the parent class, in our case the World class.

Super must be first in the constructor

Commit: 2edebe2d623173c4a542a80458e98daf9c043173

6.8. Add even more walls

Modify the constructor of the TestArena class so that the cells are laid out as shown in the figure.

Commit: a9f8c1af0fb0ce2f15ab4267107bdd87f6a76a73

6.9. Think about how to represent a series of walls

Let's think about how much information we need to be able to create any series of consecutive walls.

6.10. Add a method for the creation of a series of walls

Create a createRowOfWalls() method in the Arena superclass, which will have three parameters:

• the row (the top row has index 0) on which to start creating walls,

• the column (the left column has index 0) from which to start creating walls,

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/2edebe2d623173c4a542a80458e98daf9c043173
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/a9f8c1af0fb0ce2f15ab4267107bdd87f6a76a73

25

• a number expressing how many consecutive walls are to be created.

The method has no return value (so we use the void keyword).

Commit: b155b177619e41170ac7759f8d43ebf748a5da6b

6.11. Use the new method

Modify the code in the constructor of the TestArena class to use the createRowOfWalls() method

from its superclass – class Arena.

Commit: 91d8888d11fa710c0c2f7eb8a6e1c9da32139a66

6.12. Change the arrangement of the walls

Modify the constructor of the TestArena class to create the arena shown in the figure below. To do

this, modify the createRowOfWalls() method to have a fourth parameter defining the spacing

between the walls.

Commit: 9f6bd3b3187fb8558b68a58ff7b4a3a56f8b1e82

6.13. Think about how to represent a rectangle of walls

Let's think about how much and what kind of information we need to be able to create walls in a

rectangle arrangement whose starting point can be specified and for which the spacing between walls

in both rows and columns can be set.

6.14. Add a method creating a rectangle of walls

Declare the createRectangleOfWalls() method in the Arena ancestor, which will have the following

parameters:

• the row (the top row has index 0) from which to start creating walls,

• the column (the left column has index 0) from which to start creating walls,

• the number of rows to be created,

• the number of consecutive walls to be created in the row,

• the number of empty cells (rows) between the rows,

• the number of empty cells between the walls in the row.

The method has no return value.

Commit: 4abb74dc000ce5f91c05b24ee41bace3b0efc395

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/b155b177619e41170ac7759f8d43ebf748a5da6b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/91d8888d11fa710c0c2f7eb8a6e1c9da32139a66
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/9f6bd3b3187fb8558b68a58ff7b4a3a56f8b1e82
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/4abb74dc000ce5f91c05b24ee41bace3b0efc395

26

6.15. Use the new method

Modify the constructor of the TestArena class so that it utilizes the method

createRectangleOfWalls() to lay out the arena as shown in Task 6.12.

Commit: 69e31efd4dd9c3a4d44925b0a46eac4f693523dd

6.16. Test your arena

Create several walls in your arena and add two players. Test the functionality of the game, i.e. whether

the players will not go into a BrickWall or a Wall.

7. List and for each loop

This chapter focuses on lists in more detail using them to track other objects in the arena. It introduces

the basic methods for working with a list (creating, adding an element, removing an element, accessing

an element) and it also teaches how to use the for each loop to easily access all the elements of a list.

7.1. Check game ending

Create a method isGameEnded() with no parameters in the Arena class that detects whether the game

has ended (only one or no players are left) and tells whether it has happened in the return value of the

boolean type. For now, let's assume that the end of the game never occurs.

Commit: 4c26e33af1a085e947b1271148b012934520ad9d

7.2. End the game

Add the act() method to the Arena class. In the method, check if the game has ended (using the

isGameEnded() method) and if so, stop the game. To stop the Greenfoot environment, use the

Greenfoot.stop(); command.

Commit: b58443ab6fe8137801a7b2168cdc9935433e15fe

7.3. Add a list of players

Add the attribute listOfPlayers of type LinkedList<Player> to the Arena class. Don't forget that

you have to import the package with the LinkedList class. Initialize the attribute in the constructor

of the Arena class.

Commit: e48d151c44b93fe44a56ad8af3b41d4c21e10432

7.4. Register the players

Add registerPlayer() method to the Arena class that takes a single parameter of type Player and

inserts it at the end of the list of listOfPlayers using the add() method. Modify the subclasses of

the Arena class to register the player in the superclass (Arena) when a player is inserted into the world

at the correct location.

Commit: 1166513ff7bfd7d5415715365103821ea0c4691e

7.5. Unregister and remove a player

Add unregisterAndRemovePlayer() to the Arena class that takes a single parameter of type Player.

The method removes the player from the player list and then removes the player from the world.

Commit: f7dadce00ade4d12982a0bce2b68e358f448f01b

7.6. Correctly end the game

Implement the body of the isGameEnded() method so that the method returns true when there is one

or no player left in the game. Use appropriate list methods.

Commit: 9ba605f797adec36d7809d6719bc6effa98696c1

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/69e31efd4dd9c3a4d44925b0a46eac4f693523dd
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/4c26e33af1a085e947b1271148b012934520ad9d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/b58443ab6fe8137801a7b2168cdc9935433e15fe
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/e48d151c44b93fe44a56ad8af3b41d4c21e10432
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/1166513ff7bfd7d5415715365103821ea0c4691e
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f7dadce00ade4d12982a0bce2b68e358f448f01b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/9ba605f797adec36d7809d6719bc6effa98696c1

27

7.7. Make bombs dangerous

Modify the code in the act() method of the Bomb class so that before the bomb is removed from the

world, it will kill all players who are at most one power away from it. The getObjectsInRange()

method returns a list of type List. Its first parameter is the range - in this case the force modifier. Its

second parameter is identical to the class whose instance it searches within the given range

Commit: c594df2a673abdcadc9ef4161603d54b846e8d62

7.8. Remove affected players

Use the for loop to iterate over all the players in the list of players affected by the bomb. Unregister

such players in the Arena class.

Commit: 2d18cb6f57cf83951cc1a319e5d7f8179508a1a9

The following intermediate commit shows a more efficient way of traversing the list of affected

players.

Intermediate commit: 850919027622ff95e0985c6eae9409b96337d152

7.9. Edit the player class

Create a hit() method in the Player class that will be invoked by the player's bomb after the bomb

hits him. Unregister the player from the world in this method. Edit the code in the method act() of

the Bomb class to reflect the new functionality.

Commit: f803a0f8bfddc3ab6f7eef45817d482e11554c63

7.10. Remove the owner

Create a removeOwner() method in the Bomb class that sets its owner attribute to null. An object

instance can be thought of as a pointer - an "arrow" to the object. By setting it to null the pointer

points to no object.

Commit: 3a20a51c04cb0ea2b47cf789c2b6503e3ab86eab

At the moment we have set the owner attribute to null. So the attribute does not need to point to

an instance of the object. Therefore, before calling the bombExploded() method, we need to check if

its owner exists. The situation is resolved in the following intermediate commit.

Intermediate commit: a7e97fa06d4c2ab7a39967a80a0410c30bd28707

7.11. Add a list of bombs

Create an attribute listOfActiveBombs of type LinkedList<Bomb> in the class Player. Initialize it in

the correct constructor. Modify the method bodies according to the following rules:

• in the method act() register a newly created bomb to the listOfActiveBombs;

• in the bombExploded() method, remove the bomb that came as a parameter (the one that

exploded) from the listOfActiveBombs;

• in the hit() method, use the for each loop to remove the owner from all the bombs in the

listOfActiveBombs.

Commit: 85e552712133e34b0422ebfd4a510147d6d3e027

8. Private methods and while loop

This topic introduces the while loop – a loop that repeats while some condition defined at the

beginning of the loop evaluates to true. Furthermore, it also teaches the students how to create

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/c594df2a673abdcadc9ef4161603d54b846e8d62
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/2d18cb6f57cf83951cc1a319e5d7f8179508a1a9
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/850919027622ff95e0985c6eae9409b96337d152
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f803a0f8bfddc3ab6f7eef45817d482e11554c63
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/3a20a51c04cb0ea2b47cf789c2b6503e3ab86eab
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/a7e97fa06d4c2ab7a39967a80a0410c30bd28707
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/85e552712133e34b0422ebfd4a510147d6d3e027

28

private methods – methods that can only be invoked by an instance of the class in which the method

is defined.

8.1. Create the fire class

Create the Fire class. Choose an appropriate graphical representation. The constructor of this class

has one parameter that determines how long the fire burns in place. Ensure that the fire disappears

from the world after a given amount of time.

Commit: a68bf80f0af90da351b090217414c63e7fe9492b

8.2. Start the fire

Modify the existing bomb explosion code to leave an instance of the Fire class at the bomb site. Test

your solution.

Commit: ad9cbedf491e77a9d2ea8900bcb3a894b681997c

8.3. Spread the fire

Use the for loop to extend the bomb explosion (create an instance of the Fire class) in the right

direction from the bomb. Extend the blast to as many cells as indicated by the bomb's strength

attribute.

Commit: acf9745908e32a21f43265a4a17662aa06516778

8.4. Spread the fire in all directions

Adjust the bomb blast so that it generates fires in all directions. Help yourself by changing the

coordinates as shown in the image below.

Commit: 7f1b51fc85583b89e208051958b07d22753977db

8.5. Rewrite the loops

Rewrite all for loops for fire propagation using the while loop. Omit the second part of the condition

(it is possible to put fire in the next cell) for now.

Commit: 3e34c8950afe001ceb37e768230a7b91d7ee6cb9

In the following intermediate commit, the spreadFire() method is created with two parameters.

Walk through the method and describe where it will set the fire depending on it's input parameters.

The method is private. This means that it can only be called from the Bomb class.

Intermediate commit: b11aa272c157dbf3c16f9dd6e8e5fa9ad6542ea1

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/a68bf80f0af90da351b090217414c63e7fe9492b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/ad9cbedf491e77a9d2ea8900bcb3a894b681997c
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/acf9745908e32a21f43265a4a17662aa06516778
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/7f1b51fc85583b89e208051958b07d22753977db
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/3e34c8950afe001ceb37e768230a7b91d7ee6cb9
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/b11aa272c157dbf3c16f9dd6e8e5fa9ad6542ea1

29

8.6. Use the private method

Use the private method spreadFire() to spread the fire after a bomb explosion.

Commit: 9f81a2971a3312ec0883fb2f795d8301b47bb18c

8.7. Add another private method

Create a private method canCellExplode() in the Bomb class that takes row and column coordinates

as the parameters and returns true if an explosion can occur on that cell and false otherwise. The

fire cannot continue if:

• it reached the edge of the world,

• if the cell contains a wall.

Commit: 53af76996cf6c8e4456627e0cc7bcadd79ab80fa

8.8. Use the private methods

Using the method canCellExplode() you can now modify the condition in the while loop in the

spreadFire() method in the Bomb class. Modify the condition in the loop to respect the result of the

check from the canBombExplode() method. Test the functionality of the solution with bombs of

different strengths between the walls. Tests of different explosions are shown in the following figures:

a b

c d

In part (a) we can see the original distribution, in part (b) a bomb with force 1 exploded, in part (c) a

bomb with force 2 exploded and in part (d) a bomb with force 3 exploded.

Commit: bb7fd73866546b94537195b58b119ab62b31dc9e

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/9f81a2971a3312ec0883fb2f795d8301b47bb18c
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/53af76996cf6c8e4456627e0cc7bcadd79ab80fa
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/bb7fd73866546b94537195b58b119ab62b31dc9e

30

8.9. Check explosion obstacle

Add canExplosionContinue() private method to the Bomb class which takes row and column

coordinates in parameters and returns true if the cell did not stop the explosion at the given

coordinates. If the cell has stopped the explosion, the method returns false. The explosion cannot

continue if it has hit a wall.

Commit: f8d3838b42f0b9ac2984f4275159d5d10a059ebb

8.10. Limit the explosion

Using the canExplosionContinue() method, modify the spreadFire() method in the Bomb class. If

the explosion can continue from the given cell, increase the value of the variable i by 1 and recalculate

the coordinates of the new row and column of the explosion. Otherwise, artificially increase the value

of variable i to a value greater than the bomb's force, which stops the loop. Test your solution on the

situation from the following figure:

A b

Commit: eeb5e1cb2a887badad6aa8742a0f1fac901ff24a

As you can see in the picture, the brick wall explodes, but stops the explosion. So it should disappear

after the explosion. This is solved by the following intermediate commit.

Intermediate commit: 91f2be5f9b170744027ce763793d527c4ad9c2c4

8.11. Modify the fire presence check

Modify the behavior of the Bomb class instance so that it does not call the player's hit() method in its

reach. Instead, the player itself will check for overlapping fire. Modify the behavior of the player's

act() method so that it first checks to see if it overlaps with an instance of the Fire class. If it does, it

will call its hit() method itself. This will ensure that the player is also hit by the fire that burns after

the bomb explodes.

Commit: 13acf174668443d98eec3de6e68615ee90b4fd9d

8.12. Add a chain of explosions

Modify the act() method of the Bomb class so that the bomb explodes even if it is in the same cell as

the fire. Verify the solution by doing a chain reaction of several bombs.

Commit: 137f5de9a734561a11ea0afc6cfd5dde5e1ee1bd

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f8d3838b42f0b9ac2984f4275159d5d10a059ebb
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/eeb5e1cb2a887badad6aa8742a0f1fac901ff24a
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/91f2be5f9b170744027ce763793d527c4ad9c2c4
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/13acf174668443d98eec3de6e68615ee90b4fd9d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/137f5de9a734561a11ea0afc6cfd5dde5e1ee1bd

31

9. Polymorphism

The goal of this topic is to teach students how to create virtual methods and overlay them as needed

in subclasses. Also, the students will be introduced to a new visibility for attributes and methods – the

protected access modifier. The students will use polymorphism to simplify existing code.

9.1. Add mines

Let's start by adding a mine. The mine explodes just as the player steps on it. A mine will also always

explode when it is hit by fire (e.g. from a bomb that exploded nearby). It leaves fire in its place (and

only there). Add the ability for the player to lay mines (like bombs) when a key is pressed (e.g. control

or shift). Similar to bombs, the player also has a limited number of mines (i.e. if he lays all mines, he

can only lay another mine if one of the previously laid mines explodes). The initial number of mines is

set by a parameter of the Player's constructor. To register mines and react to their explosion in the

Player class, follow the same procedure as for bombs (create a list of mines, add methods

mineExploded(), canPlantMine(), etc.).

Commit: 5627d97dff9b5d5c1533d9cfb1a3f4a7c8bf631d

9.2. Add superclass

Create a common superclass for the Bomb and Mine classes – the Explosive class. Which attributes

and methods should be moved to the superclass, and which should remain in the subclasses? Modify

existing classes according to your design.

Commit: 48eb9fb40e332e027c2e2b168a1d6d3149d7fd3d

9.3. Adjust attribute visibility

Modify the visibility of the owner attribute in the Explosive class to protected. The visibility of the

private attribute would allow it to be used only inside the Explosive class and not in its descendants.

The protected means visibility within the package, which in our case is within the Bomberman project.

Commit: 5a0b733d1df877777bad7688631f1500cd8c7041

9.4. Add text output

Create a printWhoYouAre() method with no parameters in the Explosive class that does not have a

return value. The method prints the text “EXPLOSIVE” to the screen where the explosive is currently

located. Create an instance of the Mine class and call the printWhoYouAre() method. What happens?

Create an instance of the Bomb class and call the printWhoYouAre() method. What happens in this

case?

Commit: 0528c0a1ec75f08b2f2d088314432c5169448169

9.5. Improve the text output

Create a printWhoYouAre() method in the Mine with the same header as in the class Explosive (i.e.

the method will have the same name, the same parameters, and the same return value type). The

method will print the text “MINE” to the screen. Again, create an instance of the Mine class and the

Bomb class. Try to guess what happens when you call the test method in an instance of class Mine and

an instance of class Bomb. After that, call the methods. Does your guess match the result?

Commit: 2d3e1fe13a8d627730bf01a729ae7c1619eaf64b

9.6. Finalize the text output

Override the printWhoYouAre() method in the Bomb class so that it writes the text “BOMB” to the

screen. Verify the correctness of your solution.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/5627d97dff9b5d5c1533d9cfb1a3f4a7c8bf631d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/48eb9fb40e332e027c2e2b168a1d6d3149d7fd3d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/5a0b733d1df877777bad7688631f1500cd8c7041
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/0528c0a1ec75f08b2f2d088314432c5169448169
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/2d3e1fe13a8d627730bf01a729ae7c1619eaf64b

32

Commit: 09e622e84efe580fed9c0b67f2bdd2a48cd06b1f

9.7. Add explosion handling

Create shouldExplode() and explosion() methods in the Explosive class and

explosiveExploded() method in the Player class as described above. Do not implement the method

bodies yet. If a return value is needed, return false.

Commit: 749e2e91092f8929877af7d8aeb068f010b110ed

9.8. Make the explosive explode

Write the body of the act() method in the Explosive class.

Commit: 996cfa17d46269663becddd1e1fbe2fb82280370

9.9. Make the bomb explode

Override the shouldExplode() and explosion() methods in the Bomb class. Use the appropriate code

from its act() method. Notice that it is possible to simply write the bodies of the methods since there

is no need to reason over the conditions (the superclass did that).

Commit: c1eed984efd956ff4ddd914288201773afd92d44

Just as super was used for constructor to call the parent constructor, this is possible for other methods

as well. The following intermediate commit shows a call to the act() method in the Bomb class from

the Explosive class using super.

Intermediate commit: 5a6d0ceaa51024854ac579f1c3a888309914e22a

9.10. Make the mine explode

Override the shouldExplode() and explosion() methods in the Mine class. Use the appropriate code

from its act() method. Why is it necessary to remove the act() method in the end?

Commit: f3d63427a9a975f5205e483ea535c4440582de28

9.11. Add interaction with fire

Modify the body of the shouldExplode() method in the Explosive class so that the method returns

true if the instance touches an instance of the Fire class. Modify the overridden methods

shouldExplode() in the Bomb class and the Mine class to use the functionality of the ancestor method.

Commit: 82767b061d4e2e48810f57133a090c2b8d98017d

9.12. Simplify player attributes

Remove the attributes listOfActiveBombs and listOfActiveMines from the Player class. Add a

single attribute of type listOfActiveExplosives of type LinkedList<Explosive> to the Player

class. Initialize it in the constructor and remove the initialization of the original attributes from the

constructor.

Commit: c174bfb8c5512cb2e9e1fb45ecf36c83d84b5af7

In connection with the previous change, the Player class needs to be modified wherever the lists

listOfActiveBombs and listOfActiveMines were used. They need to be replaced by the

listOfActiveExplosives lists. Everything is resolved in the following intermediate commit.

Intermediate commit: ce7945c389bfd55b9eabf76c4599bc83f273e07e

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/09e622e84efe580fed9c0b67f2bdd2a48cd06b1f
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/749e2e91092f8929877af7d8aeb068f010b110ed
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/996cfa17d46269663becddd1e1fbe2fb82280370
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/c1eed984efd956ff4ddd914288201773afd92d44
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/5a6d0ceaa51024854ac579f1c3a888309914e22a
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f3d63427a9a975f5205e483ea535c4440582de28
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/82767b061d4e2e48810f57133a090c2b8d98017d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/c174bfb8c5512cb2e9e1fb45ecf36c83d84b5af7
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/ce7945c389bfd55b9eabf76c4599bc83f273e07e

33

9.13. Simplify explosion handling

Implement the body of the explosiveExploded() method. Using the instanceof operator to

determine if the explosive is a Bomb or if the explosive is a Mine. Based on its actual type, increment

the counter of available bombs or the counter of available mines. Be sure to remove the explosive

from the list of active explosives. Finally, remove the unnecessary bombExploded() and

mineExploded() methods.

Commit: 7a50f76f5de55cad056d372563214f0cbf581c97

10. Random numbers

This topic is devoted to randomness. The students will learn about the Random class. With the help of

its instances, they will generate random numbers. The topic also shows a way of generating random

numbers without using the Random class by directly using the Greenfoot environment. The students

will use random numbers to randomize the layout of the arena, and to add bonuses to the world –

special elements that are created after the brick wall explodes, and that improve selected player

properties.

10.1. Think about randomness

Think about what randomness is, how we can get some random result from an experiment, and what

random phenomena we observe in the world around us.

10.2. Think about generating random values

Let us consider a classic dice with six sides. Could we use it to generate a random position on a

chessboard with 6x6 squares? What about a chessboard with 3x3 squares? How would the method of

generation change if we used a coin? Suggest such position generation algorithms.

10.3. Observe randomness

Using the algorithm from the previous task and with the help of a die, generate random positions on

the chessboard. Record your results on the chessboard. Can any regularity in the results be observed?

10.4. Prepare a random arena

Prepare an arena. Create a subclass of the Arena class, which you name e.g. RandomArena. Set the

appropriate world size in the constructor. We recommend a regular wall layout with one empty field

between the walls as shown in the following figure:

Commit: f937ffbd36f64b0df7c9d904e974a2437d9c8959

In the intermediate commit there is empty method createRandomWall() prepared.

Intermediate commit: f692394053ce0a3f76c6ec294c977ef3d7dba91c

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/7a50f76f5de55cad056d372563214f0cbf581c97
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f937ffbd36f64b0df7c9d904e974a2437d9c8959
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/f692394053ce0a3f76c6ec294c977ef3d7dba91c

34

10.5. Add a random number generator

Add a reference attribute of type Random to the RandomArena class. Remember that the class Random

is defined in the package java.util.Random. Initialize the attribute in the constructor.

Commit: 69655b53dac3fe0565d88e124cab63a03ee5b533

In the following intermediate commit, random numbers are generated and stored in the

randomColumn and randomRow variables.

Intermediate commit: 1ba83506b6b2ea5b81ba79c67c506a81d11e8dc5

10.6. Check cell occupancy

Add an isCellFree() private method to the RandomArena class that takes two parameters – column

and row. The method will return true if the cell is free in the world (contains no instance of class

Actor), otherwise, it will return false.

Commit: 05dc486ffc38a6dd69e510072ce15d0e9ad4698a

Now it is possible to generate the coordinates of a cell where there is no object of the Actor class and

insert an instance of the BrickWall class into it. Everything is solved by the while loop in the following

intermediate commit.

Intermediate commit: 6507a2386b739c1894f96cba24d49661d0195571

10.7. Generate random walls

Modify the constructor of the RandomArena class to randomly generate walls into a third of all cells in

the arena.

Commit: e92647d730fb61f573a144c06c690d9366889869

10.8. Move randomness to the ancestor

Move the createRandomWall(), isCellFree() methods, and the generator attribute (including its

initialization in the constructor) to the Arena superclass. Don't forget to move the import lines as well.

Commit: bd5f0d27c3437995362161e948dbf2af381e8715

10.9. Generalize random generation

Add a parameter of type Actor to the createRandomWall() method – this will be the actor, which we

will insert at random coordinates. Change the method name (e.g. insertActorRandomly()) and

update the method call from the RandomArena class.

Commit: 55cf63e631abcc7924e83fa38d558e3bd8e1f8aa

10.10. Add bonuses

Create a Bonus class as a subclass of the Actor class. Create two subclasses of the Bonus class – class

BonusFire and class BonusBomb. Set appropriate images for the classes.

Commit: df2b5f48f12f9cdc1de0528422dbda07e5051d59

10.11. Create bonuses randomly

Edit the code in the act() method of the BrickWall class. After it is destroyed, generate in its place

with a probability of 10 % a bonus fire, and with the probability of 10%, generate a bonus bomb. In

80% of cases, nothing is generated after destruction.

Commit: 7ec336a713814cdae7fe1be841c5e4feacd75e74

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/69655b53dac3fe0565d88e124cab63a03ee5b533
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/1ba83506b6b2ea5b81ba79c67c506a81d11e8dc5
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/05dc486ffc38a6dd69e510072ce15d0e9ad4698a
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/6507a2386b739c1894f96cba24d49661d0195571
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/e92647d730fb61f573a144c06c690d9366889869
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/bd5f0d27c3437995362161e948dbf2af381e8715
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/55cf63e631abcc7924e83fa38d558e3bd8e1f8aa
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/df2b5f48f12f9cdc1de0528422dbda07e5051d59
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/7ec336a713814cdae7fe1be841c5e4feacd75e74

35

10.12. Apply the bonus

Prepare the Bonus class. Create a protected applyYourself() method with no return value, which

takes a single parameter of type Player. Leave this method empty in the Bonus class. Then define an

action in the act() method to first detect if a player has stepped on the bonus (method

(Player)this.getOneIntersectingObject(Player.class)) and if so, apply it (by calling the virtual

method) and finally remove the bonus from the world.

Commit: 684b7d72b6d5c22a355ae7ca76e53f8cc540908d

10.13. Increase bomb count

Add a public increaseBombCount() method with no parameter to the Player class that does not

have a return value, and which will increase the number of bombs the player can plant by one. Then

override the applyYourself() method in the BonusBomb class. Applying the bonus means increasing

the number of bombs the player has by one (calling the increaseBombCount() method).

Commit: cb43a15261ded0f12df3b92cfe5d50efe24e9e95

10.14. Increase bomb power

Add a public, increaseBombPower() method with no parameter to the Player class that does not

have a return value, and which increments the value of the bombPower attribute by one. Then override

the the applyYourself() method in the BonusFire class and increase the player's bomb strength by

one.

Commit: 4abf63b01f1eee1c870821a90cb0e920594443af

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/684b7d72b6d5c22a355ae7ca76e53f8cc540908d
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/cb43a15261ded0f12df3b92cfe5d50efe24e9e95
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-bomberman/commit/4abf63b01f1eee1c870821a90cb0e920594443af

36

3.2. Tower defense
In tower defense like games, player uses towers shooting some kind of bullets to stop enemies from

reaching and destroying an orb. The enemies always follow the same path, however as the game

continues, the enemies become stronger and spawn in larger groups. The player must place the towers

in strategic places to stop them in upcoming waves. There exist many versions of the game that take

place in different worlds using different entities (from balloons up to orcs, defending using animal like

towers up to magical pools).

This project will introduce one type of tower that can or cannot be manually controlled by the player.

Enemies will be of different types with differences in their HP and speed. The introduced game design

is easy to expand, what leaves enough space for students’ creativity as well as for teacher’s

assignments. For this reason, we tried to minimize assessment type activities in the first chapters.

Moreover, the design leaves enough space to naturally introduce topics out of scope of light OOP (such

as polymorphism) with ease. The project in its final state during gameplay is shown in Figure 3.

Figure 3: Greenfoot environment with final state of project Tower defense

Source codes are available at:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense

Learning design is available at:

http://learning-design.eu/en/preview/452257b563cbf14b6f06acfd/details

3.2.1. Content and scope of the educational program
Overall learner workload is 33h 5min and is distributed as follows:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense
http://learning-design.eu/en/preview/452257b563cbf14b6f06acfd/details

37

Figure 4: Learner workload when using project Tower defense

Constructive alignment is summarized in table below:

Table 2: Constructive alignment of project Tower defense

For a detailed plan refer to attachment 5.2.

3.2.2. Topics
Project tower defense is divided into seven topics:

1. Introduction to the Greenfoot environment ... 38

2. Algorithm, application controls, method creation ... 40

3. Branching and enemy control ... 41

4. Variables and expressions .. 43

5. Association ... 45

6. Inheritance ... 49

7. Encapsulation ... 52

Covered topics of light OOP are:

• classes, objects, instance

• methods, passing methods arguments

• constructors

• attributes

• static variables and methods

• encapsulation

38

• inheritance

• abstract classes

• object live cycle

1. Introduction to the Greenfoot environment

The topic is devoted to project creation. Students will be capable of creating a new project in Greenfoot

environment, create class (as subclass of Actor), select image for newly created class, create its

instance and send a message to it.

Create a new project. Give it a proper name (e.g. TowerDefense) and save it to a proper location.

Commit: 9046f5353d857dcc112abd92d7b7170abcc64a80

Table 3 summarizes comparison of workloads of topic Greenfoot environment between projects

Bomberman and Tower defense. There is no difference in the design of the topics.

Table 3: Comparision of workloads of topic Greenfoot environment between projects Bomberman and Tower defense

Bomberman 0h 20min Tower defense 0h 20min

Table 4 summarizes comparison of workloads of topic Class definition between projects Bomberman

and Tower defense. The workload of Tower defense project is lower, more practically oriented with

emphasis on investigation and practice.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/9046f5353d857dcc112abd92d7b7170abcc64a80

39

Table 4: Comparision of workloads of topic Class definition between projects Bomberman and Tower defense

Bomberman 4h 10min Tower defense 3h 55min

1.1. Task 1.1 Identify objects from project Bomberman.

1.2. Prepare the world

Edit source code of class MyWorld (double-click on it) to create a world of size 24x12 cells. Each cell

should be 50 pixels in size.

Commit: a593cd4a92d0fa0db78275614c3e41a2e96b4e57

1.3. Prepare world graphics

Find or create a proper image for the world background. You may either use prepared images (select

item Set image... from the context menu of class MyWorld) or custom image (copy image into

subfolder images of your project folder and select it using the same way as described before).

As a background you may use sole image that will cover whole world’s area (compute needed size of

the image with regards to the world’s size) or smaller one, that will be repeatedly copied (use square

image with the size of the cell).

Commit: 1184980643db082cfdd6bde9984bceaddf010d49

1.4. Create class Enemy

Create an enemy. Enemy will march towards player’s orb to damage and eventually destroy it. Create

a new subclass of class Actor (select item New subclass... from the context menu of class Actor).

Give it proper name (Enemy) and image.

Commit: 4981400623729c3d112b54454b6e6151e18426bf

1.5. Create instance of class Enemy

Create an instance of class Enemy (select item new Enemy() from the context menu of class Enemy,

put instance into world by left mouse click on desired position). Investigate its internal state (select

item Inspect from the context menu of the created instance).

Create another instance of class Enemy and put it in another position. Compare internal states of two

created instances.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/a593cd4a92d0fa0db78275614c3e41a2e96b4e57
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/1184980643db082cfdd6bde9984bceaddf010d49
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4981400623729c3d112b54454b6e6151e18426bf

40

1.6. Send messages to instance

Send a message to instance of class Enemy (select item inherited from Actor from the context menu

of chosen instance and then select desired item). What happened? How was the internal state of

respective instance affected?

Send messages to the instance of class Enemy so it will move into position [12, 6] and it will be facing

down. Write the sequence of sent messages onto paper.

2. Algorithm, application controls, method creation

Topic deals with basics of algorithmization and introduces the work with documentation from very

beginning. Students will be capable of calling a method in source code, write and invoke

documentation.

Table 5 summarizes comparison of workloads of topic Algorithm between projects Bomberman and

Tower defense. The design of Tower defense is similar to Bomberman, however with significantly lower

number of TLAs of investigation type. See, that many TLAs are the same as in Bomberman project. This

is because in this state of the projects, there is a large overlap of what can be done with it. It is possible

to find inspiration in tasks in Bomberman project, if there will be any need to strengthen the

investigation part of the syllabus. However, for the sake of teaching light OOP using the Tower defense

project, we find the proposed amount of investigation type TLAs sufficient.

Table 5: Comparision of workloads of topic Algorithm between projects Bomberman and Tower defense

Bomberman 4h 30min Tower defense 3h 15min

2.1. Task 2.1 Write a simple algorithm from project Bomberman.

2.2. Task 2.2 Write a more general algorithm from project Bomberman.

2.3. Call a method

Add a statement to the body of the act() method such that the instance of the Enemy class moves

two cells in the current direction. Then create more instances of the Enemy class and call the method

on each instance. Is the behavior expected?

Commit: 7ba327ebeba6a13be68d9d21cc7e74b0da376132

2.4. Add documentation

Add a documentation comment for the act() method.

Commit: 68b1c82c7df2c7826f2d3f78373498569adab7e9

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/7ba327ebeba6a13be68d9d21cc7e74b0da376132
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/68b1c82c7df2c7826f2d3f78373498569adab7e9

41

2.5. Add more documentation

Edit the documentation comment of the Enemy class. Add the version of the class and its author.

Commit: 1a7a9f83c5271a7c0dfa46ce3b1ee65682b0c5e5

2.6. Task 2.7 Read the documentation from project Bomberman

2.7. Task 2.9 Explore application controls from project Bomberman

3. Branching and enemy control

Topic covers incomplete and complete branching. Basics of Actor’s World perception is introduced.

Students will be capable of writing code using conditions.

The state of the project in this chapter opens possibilities for teacher to assign tasks like “use instances

class of Direction and Orb to navigate Enemy so that it will move in desired pattern“, with limit

conditions like using maximum number of instances of particular class or tasks like “predict movement

in desired setup of world”.

Table 6 summarizes comparison of workloads of topic Branching between projects Bomberman and

Tower defense. There is a clear difference between the designs. Tower defense splits the production

type TLAs to strengthen investigation and practice. This allows to experiment more and leaves the door

open for students creativity. Note the low number of acquisition TLAs. This is because a) there is no

multiple branching introduced and b) investigation TLAs are emphasized.

Table 6: Comparision of workloads of topic Algorithm between projects Bomberman and Tower defense

Bomberman 5h 15min Tower defense 3h 25min

3.1. Observe the enemy state

Create an instance of the Enemy class and place it in the center of the board. Open a window with the

internal state of the instance and position it so that it is visible while the application is running. Then

run the application and observe how the values of the x, y and rotation attributes in the Enemy class

change. How do these values change as you move (up, down, left, and right) and turn?

3.2. Add world edge detection

Add code to the body of the act() method to rotate the enemy 180° after reaching the edge of the

world.

Commit: 4927c3ff7eb39b51ba2738f2ab500fd6c32e3bb4

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/1a7a9f83c5271a7c0dfa46ce3b1ee65682b0c5e5
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4927c3ff7eb39b51ba2738f2ab500fd6c32e3bb4

42

3.3. Add classes Direction and Orb

Create two new classes, descendants of the Actor class. The first class will be Direction class and the

second class will be Orb. Prepare suitable (max. 50x50 pixel) images in a graphical editor. Then assign

these images to the newly created classes.

Commit: 4ed6b37e6d481181d8b340639aa03391406b6c2e

3.4. Add collision detection

Add code to the act() method of the Enemy class to ensure that:

• the enemy turns 90° clockwise when he enters a cell the contains an instance of the

Direction class,

• the enemy turns 90° counterclockwise when he enters a cell the contains an instance of the

Orb class.

Commit: 968e6f195e3def25e11bc41b664ba1715f7da11d

3.5. Predict enemy movement on custom setup

Prepare different configurations, inspiration can be found in the figures below. Guess how the enemy

will move? Run the application. Does your prediction match what you observe? What caused

differences in prediction and reality?

.

a) b) c)
Figure 5: Configurations of custom setups of instances to predict movement of instance of class Enemy

3.6. Predict enemy movement on specific setup

Prepare the situation as depicted in the figure below. Guess how the enemy will move? Run the

application. Does your prediction match what you observe? What caused differences in prediction and

reality?

a) b) c)

Figure 6: Configurations of tricky setups of instances to predict movement of instance of class Enemy

3.7. Use full branching with collision detection

From the last chapter, you can see that the problem occurs when an instance of the Orb or Direction

class is on the edge of the world, or both instances are in the same cell. When branching is incomplete,

collisions or repeated rotations occur. Basically, multiple conditions are satisfied at the same time.

Therefore, you need to change the code of the act() method of the Enemy class so that only one rotation

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4ed6b37e6d481181d8b340639aa03391406b6c2e
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/968e6f195e3def25e11bc41b664ba1715f7da11d

43

occurs. It is necessary to use full branching. Create a cascade of conditions. The most important check

(that is, the first one) is edge detection. The second most important check is the touch check for an

instance of the Direction class. The last is the check for touching an instance of the Orb class. Modify

the act() method according to these rules.

Commit: f017de8b49d4fc77f62afac4d842429560bcfb8b

3.8. Predict enemy movement on previous setups

Run through tasks 3.5 and 3.6 again. What changed?

4. Variables and expressions

This chapter introduces variables and expressions.

The state of the project in this chapter opens similar possibilities as in the last chapter. With a little

creativity there may be added more classes like the Direction class, that will cause different behavior

when step onto (e.g. teleports, tunnels, etc.) by instance of class Enemy. These classes can be discussed

with students and the respective implementation may be assigned as home assignments.

Table 7 summarizes comparison of workloads of topic Variables and expressions between projects

Bomberman and Tower defense. See the similarity between designs of previous and current topics

between the two projects. This topic is more production oriented (similarly to previous topic in

Bomberman) and vice versa (note that Bomberman is different type of project, where student’s

creativity was with benefits used in this topic).

Table 7: Comparision of workloads of topic Variables and expressions between projects Bomberman and Tower defense

Bomberman 5h 15min Tower defense 6h 20min

4.1. Turn in direction

Change code in Enemy’s act() method so it will turn into the same direction as Direction class

instance (they will have the same rotation). Use getOneIntersectingObject(_cls_) method to

store instance in proper local variable (Direction direction - you will need to use typecast, since

return value is of type Actor, write (Direction) in front of getOneIntersectingObject method call,

we will get to typecast later). If any instance of respective class was obtained, extract the direction’s

rotation using getDirection() method (store it if you want) and then set it into enemy (this) using

method setDirection(int). Test your solution.

Commit: 97dddc4beba40ac785c7413bb245ba849cd956d2

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/f017de8b49d4fc77f62afac4d842429560bcfb8b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/97dddc4beba40ac785c7413bb245ba849cd956d2

44

4.2. Rename class MyWorld to Arena

Give class MyWorld better name. Rename it to Arena. Do not forget to rename the constructor

accordingly.

Commit: aaf73c9bfd9f76a2a1e504f5e78d2976f1cada12

4.3. Create layout of Arena

Create custom layout of Arena. Fill the constructor of the class. Add one instance of Enemy, one

instance of Orb and at least one instance of Direction. To add (subclass of) Actor, you can use

following template:

1. Declare and initialize variable of required type (subclass of Actor)
Enemy e = new Enemy();

2. Assign properties using proper methods
e.setRotation(90);

3. Put it into world’s (Arena) using method addObject(Actor).
this.addObject(e, 6, 0);

Test your solution.

Commit: 8b105ea2eaf697f08c321efe687ddd31e2d0a041

4.4. Identify problem with movement and propose solution

Identify what causes the problems with movement. How can these problems be solved?

Enemy is currently moving 2 cells at once, what causes problems with movement. We can model the

speed of the enemy differently. Instance of Enemy will always move 1 cell at once. However, we

introduce move delay – instance of Enemy will move after delay calls of method act() will pass.

4.5. Attribute Enemy.moveDelay

Add new attribute of type int called moveDelay into class Enemy. Create parametric constructor with

parameter to initialize this attribute. Initialize the attribute with parameter. Adjust code in Arena

accordingly.

Commit: 6092489ce57541e77ae4e2ee886b20853df9f8a4

4.6. Movement of enemies respecting delay

Update the method act() of class Enemy, so it moves after moveDelay calls of the method. Introduce

new attribute nextMoveCounter. Initialize it to 0. Modify act() method so it calls this.move(1) only

if nextMoveCounter reaches 0. After movement, reset nextMoveCounter to the value of moveDelay.

If instance of Enemy could not move (because nextMoveCounter did not reach 0), decrease

nextMoveCounter by 1.

Commit: bf26e6ed23911ccb712fae3e243cdedff3a89a7f

4.7. Parametric constructor of class Direction

Add parametric constructor to class Direction with sole parameter rotation of type int. Rotate

created instance in the body of constructor by the parameter. Adjust code in Arena accordingly.

Commit: 3c4b9ef57ab17bac2a0abc7fc5e76ea4b6e27e4b

4.8. Overload constructors in class Direction

Overload constructors in class Direction by adding non-parametric constructor. In the body of non-

parametric constructor, call parametric constructor with argument direction equal to 0. Adjust code

in Arena accordingly – where possible, call non-parametric version of Direction class constructor.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/aaf73c9bfd9f76a2a1e504f5e78d2976f1cada12
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/8b105ea2eaf697f08c321efe687ddd31e2d0a041
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/6092489ce57541e77ae4e2ee886b20853df9f8a4
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/bf26e6ed23911ccb712fae3e243cdedff3a89a7f
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/3c4b9ef57ab17bac2a0abc7fc5e76ea4b6e27e4b

45

Commit: 1e67e67523c66acea4e93363c9a3173302f424c8

5. Association

The most important topic of this project is focused on the association. The discussion is used to find

how the cooperation of different objects can bring complex behavior, even though the codes in the

objects are easy to understand and maintain. UML sequence diagrams are used to illustrate the

cooperation of objects and spreading the algorithm among cooperative objects. This diagram can be

built during the discussion with class.

The project can be found completed after this topic. The following chapters introduce more variability

to the application with focus on advantages of OOP when properly used.

Table 8 summarizes comparison of workloads of topic Association between projects Bomberman and

Tower defense. We consider the understanding of association to be the most important competence

when utilizing this project to teach OOP. Therefore, we significantly strengthened production and

discussion TLAs. Note that there are also assessments TLAs. These are designed in a way to use

previously done TLAs in slightly different context.

Table 8: Comparision of workloads of topic Association between projects Bomberman and Tower defense

Bomberman 3h 45min Tower defense 6h 25min

5.1. Discuss what should happen when enemy reaches orb

After the enemy reaches the orb, the orb decreases HP. If the HP = 0, game ends, otherwise the enemy

is respawned in the arena.

5.2. Discuss how instance of class Enemy should interact with the relevant objects using

messages when hitting instance of class Orb

The algorithm is spread among cooperating objects.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/1e67e67523c66acea4e93363c9a3173302f424c8

46

Enemy orb: Orb Arena

hit(this)

option

[intersect with
orb: Orb]

decrease hp

respawn(enemy)

act()

alternative

[hp]

[hp > 0]

getAttack()

Greenfoot

stop()

Figure 7: UML sequence diagram of instance of class Enemy interacting with other objects when hitting instance of class Orb

5.3. Attributes Enemy.attack and Orb.hp

Add new attribute of type int called attack into class Enemy. Add parameter into constructor to

initialize this attribute. Initialize the attribute with parameter.

Add new attribute of type int called hp into class Orb. Add parametric constructor with parameter to

initialize this attribute. Initialize the attribute with parameter.

Adjust code in Arena accordingly.

Commit: 4ca1e9f25685990d2bdfe5b610c28422e0944f95

5.4. Getter of attribute Enemy.attack

Create getter (method used to get a value of an attribute) of attribute attack in class Enemy.

Commit: 72b7456ea4cc11416c57d72c89b6a7f7e9266e3e

5.5. Create and test method Arena.respawn(Enemy)

Add method respawn without return value and with sole parameter of type Enemy into class Arena. In

the method, set location and rotation of the instance of class Enemy into same values as when created

in constructor.

Test the method. After the instance of Arena is created, do not launch the application. Instead drag

the instance of Enemy. Then invoke context menu of the Arena instance (you need to right click in the

arena where there is no instance of another class) and select respawn method item. To fill a parameter,

make sure that the application is paused and filed with parameter is active (with cursor blinking inside).

If so, left click on the instance of Enemy. Observe what expression has been built in the window. Then

click the OK button and see what happens.

Commit: 43a221876b8acb4fd507175ec4c8f520121d1ab1

5.6. Create and test method Orb.hit(Enemy)

Add method hit without return value and with sole parameter of type Enemy into class Orb. Let the

body empty.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/4ca1e9f25685990d2bdfe5b610c28422e0944f95
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/72b7456ea4cc11416c57d72c89b6a7f7e9266e3e
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/43a221876b8acb4fd507175ec4c8f520121d1ab1

47

Test the call of the method. Use similar steps as above, however, invoke the context menu of the

instance of class Orb. Observe what expression has been built in the window.

Commit: fe03d520260f172066be35055a901487bf7c2ff7

5.7. Call method Orb.hit(Enemy) from Enemy

Alter code in method act() of class Enemy so the method hit() will be called when instance of Enemy

(this) hits the instance of Orb.

Remove old codes that caused enemy to rotate when the orb was hit and that caused enemy to bounce

from the edge of the world.

Commit: 63f9c96717d9d2587b60095e3b249b0158c8587b

5.8. Implement method Orb.hit(Enemy)

Implement the body of method Orb.hit(Enemy) with respect to the analysis made in task 5.2. Test

your application.

Commit: 84bcd7c128faaa9313b507f7438f826ae2f47d2c

5.9. Add classes Bullet and Tower

Add classes Bullet and Tower. Use the same principles as in task 3.3.

Commit: ece4df70042c8f60098e14ad2cee55514897d825

5.10. Discuss how the instance of class Bullet should move and what should happen when it

reaches instance of class Enemy or edge of the arena.

Bullet should move until it reaches enemy or the edge of the world. Bullet does not change the direction

of the movement. The speed of the bullet can be managed using the same mechanism as in task 4.6.

5.11. Implement movement of instance of class Bullet

Apply knowledge covered in tasks 3.2, 3.4 and 4.6. Place a documentation comment into the code,

where interaction with instance of class Enemy should happen.

Commit: d372827a831381b2254f838041fa4d9a42e53b82

5.12. Discuss how the instance of class Tower will shoot instance of class Bullet

Keep in mind, that instance of Tower should not shoot in each call of method act(). Inspire by the

mechanism used in 4.6. Separate relevant steps into methods of class Tower.

5.13. Discuss how instance of class Tower should interact with the relevant objects using

messages when shooting

Use analogic principles as in 5.2.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/fe03d520260f172066be35055a901487bf7c2ff7
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/63f9c96717d9d2587b60095e3b249b0158c8587b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/84bcd7c128faaa9313b507f7438f826ae2f47d2c
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/ece4df70042c8f60098e14ad2cee55514897d825
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/d372827a831381b2254f838041fa4d9a42e53b82

48

Tower

act()

alternative

[otherwise]

[canShoot()] fire()

reset shoot
counter

decrease shoot
counter

Bullet

new

bullet: Bullet

setRotation(getRotation())

Arena

addObject(bullet, getX(), getY())

Figure 8: UML sequence diagram of instance of class Tower interacting with other objects when creating instances of class
Bullet

5.14. Implement shooting of instance of class Tower

Follow output of task 5.13:

• First prepare necessary attributes and constructor, then

• create methods boolean Tower.canShoot() and void Tower.fire() (first one let return

false, second let do nothing, so you can use them in method act()) and then

• implement body of method act().

Implement method canShoot() to return true if shoot counter reaches 0.

Implement method fire() as follows:

• call constructor of class Bullet and store created instance in local variable (Bullet bullet),

• add created bullet into arena on the same coordinates as instance of class Tower (this)

and

• set bullet same rotation as shooting tower.

Test your solution.

Commit: 62aec085954beacf996865a55bed312a09c675f2

5.15. Towers in Arena

Overload constructor of class Tower so it accepts parameter also int rotation (analogically to 4.8).

Update constructor of class Arena to place instances of class Tower as desired. Use proper constructor

of class Tower.

Commit: bfb6a271f490c341c760e654b3f86a87111c54cb

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/62aec085954beacf996865a55bed312a09c675f2
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/bfb6a271f490c341c760e654b3f86a87111c54cb

49

5.16. Discuss how instance of class Bullet should interact with the relevant objects using messages

Use analogic principles as in 5.2.

Bullet

act

enemy:Enemy

hit(this)

getAttack()

option

[intersect with
enemy: Enemy]

option

[hp]

Arena

kill(this)

decrease hp

Figure 9: UML sequence diagram of instance of class Bullet interacting with other objects when hitting instance of class Enemy

5.17. Implement instance of class Bullet hitting instance of class Enemy

Follow output of task 5.17:

• first prepare attribute and methods (analogically to tasks 5.3, 5.4, 5.5 and 5.6),

• then call method Enemy.hit(Bullet) from instance of class Bullet (analogically to 5.7)

where the comment was left from 5.11 and,

• lastly, implement method Enemy.hit(Bullet) (analogically to 5.8).

Test your solution.

Commit: dcfe31bc006b7f3dcd8b8b759cc1be901c32913c

5.18. Spawn of enemies and end of the game

Use method Arena.act() to call spawning of enemies. Properly implement delay between enemies

spawn. Spawning process (create instance of class Enemy, assign its properties, add it into arena)

implement in Arena.spawn() method. Count created instances of class Enemy in attribute of class

Arena (initialized to 0, increase when spawned, decrease when killed). Alter method

Arena.kill(Enemy) – if last enemy is killed, player won the game – stop Greenfoot and write a

message on the screen.

Commit: d48341a095561500af6032d5c8f56e201060f9a4

6. Inheritance

This topic introduces variability into the project via inheritance. We introduce Liskov substitution

principle to show benefits of OOP. We strongly suggest to let students experiment and come up with

custom subclasses of enemies and arenas. Since these will have a common interface, it will be easy to

put everything together. Similarly to topic 4 there may be many home assignments created.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/dcfe31bc006b7f3dcd8b8b759cc1be901c32913c
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/d48341a095561500af6032d5c8f56e201060f9a4

50

As mentioned before, the project can be found to be completed after previous topic. Therefore if

needed, teacher may adapt this topic to show benefits of inheritance and with it connected universality

only on here proposed hierarchies of class Arena or Enemy. This will lead to reduction of hours

associated with this topic.

Table 9 summarizes comparison of workloads of topic Inheritance between projects Bomberman and

Tower defense. The suggestion in experimenting is projected in more investigation, practice and

production type TLAs. More theory is covered in this topic with focus on Liskov substitution principle.

Table 9: Comparision of workloads of topic Inheritance between projects Bomberman and Tower defense

Bomberman 3h 0min Tower defense 5h 55min

6.1. Identify common properties of classes Orb and Direction

Instances of classes Orb and Direction do not act during lifetime. They just react to messages. We can

introduce common ancestor that will keep method act() empty and make subclasses more

transparent.

6.2. Add class PassiveActor as ancestor of classes Orb and Direction

Create new class PassiveActor. Alter codes of classes Orb and Direction to be descendant of

PassiveActor. Remove method act() from classes Orb and Direction – it is inherited from

PassiveActor.

Commit: afe617814c07a5d885ed06479bf71deda8725f19

6.3. Make class PassiveActor abstract

When creating methods of the PassiveActor class, we encounter methods that cannot be

implemented in the common class and so we have to leave the implementation to the descendants.

As an example, let's consider the Shape class with the children Rectangle and Triangle. Each shape

will have perimeter and content methods implemented, but they cannot be implemented in a common

class. If we mark a class method as abstract, we are essentially saying that a descendant will implement

it. The class containing the abstract method must be abstract. Therefore, we add the word abstract

to the class header.

Commit: f7a5702cae29bf21c9c88620d01ef64e4127c21c

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/afe617814c07a5d885ed06479bf71deda8725f19
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/f7a5702cae29bf21c9c88620d01ef64e4127c21c

51

6.4. Identify common properties of classes Bullet and Enemy

Instances of classes Bullet and Enemy act similarly during lifetime. They move the same way and

afterwards they react to the surroundings. We can introduce common ancestor, that will implement

method act() to move in same way and make subclasses focus on their specific purpose.

6.5. Add abstract class MovingActor as ancestor of classes Bullet and Enemy

Use similar approach as in 6.2.

Commit: 43e53b533563ce0a860b294ad9009f77409c48d4

6.6. Identify attributes of classes Bullet and Enemy required for movement

Investigate method act() of respective classes. Identify attributes moveDelay and nextMoveCounter.

Observe, that code of method act() responsible for movement is the same.

6.7. Move code responsible for movement into class MovingActor

• Move attributes identified in 6.6 from subclasses Bullet and Enemy into MovingActor

(remove them from subclasses).

• Add parametric constructor into class MovingActor to initialize these attributes.

• Call parent constructor with proper parameters from subclasses Bullet and Enemy.

• Move code responsible for movement in method act() of subclasses Bullet and Enemy into

MovingActor (remove code from subclasses, keep there the rest of the method).

• Call parent version of method act() as first line of method act() in subclasses Bullet and

Enemy.

Commit: ca1f010a63445c1847b74259a1c6cd4817121db3

6.8. Create custom enemies

• Add subclasses of class Enemy that will represent different enemies (e.g. Frog and Spider).

Make sure that images do not exceed the size of cell.

• Add to classes parameterless constructor, that will call parent (Enemy’s) constructor with

parameters specific for each kind of enemy.

• Remove method act() (or add call super).

Commit: b0ac1fbe793548a32f7700c292aed631918c8388

6.9. Spawn custom enemies

Update method Arena.spawn(). Create instance of either Frog or Spider and store it into variable of

type Enemy. Use any kind of decision to decide which instance should be created (may be random, may

be precisely counted, etc.). See that no other codes in the application must be changed.

Commit: 8cd4397f585ec957bbc18ca98e01823f434a13a6

6.10. Discuss hierarchy of Arenas

Discuss and design hierarchy of Arena classes. Subclasses of Arena will be responsible for custom

layout – position of Orb and Direction instances, size of arena. These tasks will be performed in

constructor of subclass. What will be needed to pass into parent class (Arena) constructor parameters?

Keep in mind that all the rest (spawning, respawning and killing enemies) will be performed in class

Arena.

You should identify the need to set and store spawning position and rotation. This will be done using

attributes and relevant constructor parameters. Moreover, constructor should also accept dimensions

of area.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/43e53b533563ce0a860b294ad9009f77409c48d4
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/ca1f010a63445c1847b74259a1c6cd4817121db3
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/b0ac1fbe793548a32f7700c292aed631918c8388
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/8cd4397f585ec957bbc18ca98e01823f434a13a6

52

6.11. Make universal Arena

Introduce attributes int spawnPositionX , int spawnPositionY and int spawnRotation and use

them in methods spawn() and respawn(Enemy). Add parameters to constructor of class Arena to

initialize them.

Add two more parameters to constructor of class Arena – int width and int height. Pass these

parameters to parent constructor.

Notice that Arena cannot be automatically constructed by Greenfoot, since it needs parameters for

constructor. Make it abstract.

Commit: e9844d7d9b5f19969618b469ebc907d0fe3c1357

6.12. Create DemoArena

Add subclass DemoArena of class Arena. Call parent constructor of class DemoArena with parameters

that will ensure to create arena of same dimensions and spawning enemies in a same way as before.

Move code responsible for layout of instances of classes Direction, Orb and Tower from constructor

of Arena to constructor of DemoArena.

Create instance of DemoArena – from context menu of class DemoArena select item new

DemoArena().

Commit: 6a6569774b5735f453a56c7cb2cdbf19d228eae9

6.13. Create custom arenas

Using similar approach as in 6.12 create other innovative subclasses of class Arena. You can share the

code with other students in your group.

7. Encapsulation

The last topic is focused on proper utilization of private methods and class methods and variables. The

usage of class methods and variables can be replaced by (non-class) attributes and methods in class

Arena (in the context of our project there is only one instance of Arena present). This will allow to

implement tasks from this topic but using the already known concepts.

We have already used encapsulation for the Bomberman project. Here, static attributes and static

methods will be used. Until now, all attributes and methods were bound to an instance of the class.

Let's imagine a situation where we would like to count bullets fired in the Bullet class. The number

of bullets fired is common to all instances of the Bullet class and does not depend on a particular

instance. Such an attribute is called static and since it is common to the class, it is accessed through

the class name, e.g. Bullet.count. Similarly, we can create, for example, a method that returns the

number of bullets. Again, this will be common to all instances of the class. It will therefore be static.

Static attributes and static methods have the keyword static in their declaration. Note that they can

exist even if there is no instance of the class. Static methods are initialized in the definition itself.

static int countOfBullets = 0;

static int countOfBullets(){

...

Table 10 summarizes comparison of workloads of topic Encapsulation between projects Bomberman

and Tower defense. Similarly to previous topic, the production is more evenly distributed among other

types of TLAs. The higher amount of acquisition TLAs comes from the introduction of class methods

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/e9844d7d9b5f19969618b469ebc907d0fe3c1357
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/6a6569774b5735f453a56c7cb2cdbf19d228eae9

53

and variables. As suggested, there is a possibility to avoid these concepts, what will lead to reduction

of those TLAs, what will lead to similar design as of project Bomberman.

Table 10: Comparision of workloads of topic Encapsulation between projects Bomberman and Tower defense

Bomberman 4h 30min Tower defense 3h 30min

7.1. Create class ManualTower

Create class ManualTower as descendant of class Tower. Prepare images of this class when under

control and when not. Add two constructors with same signature as the parent constructors and

ensure calling of parent constructor. Let method act() call parent version of itself.

Add instances of this class into the layout of chosen Arena.

Commit: 63a02fa0c5080165cba8b467da08c4b65f31d0a8

7.2. Change of control of manually controlled tower

Add attribute boolean isManuallyControlled and initialize it to false. Create method void

changeControl(boolean) and change the attribute and change the image accordingly.

Commit: 2257746b7dac5eaab7acc55d6493319230338f3a

7.3. Invoke change of manual control

Manually invoke change of manual control of selected instance of class ManualTower. Observe

changes in internal state similarly to 1.6.

7.4. Process user control

Create private method void processUserControl(). First detect, if it was clicked on this instance. If

so, change to manual control. Afterwards implement manual control itself. Test, whether the instance

is in manual mode and if so, obtain MouseInfo object. If the object was obtained, turn the instance of

ManualTower towards the position of the mouse cursor.

Call prepared method processUserControl() from method act() before passing the execution to

parent (super.act()). Check in the method, whether it was clicked on this instance. If so, call method

changeControl with proper value.

Test your solution by executing 7.3 again.

Commit: 6ec1f489576019a6493490f9e97797920b923869

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/63a02fa0c5080165cba8b467da08c4b65f31d0a8
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/2257746b7dac5eaab7acc55d6493319230338f3a
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/6ec1f489576019a6493490f9e97797920b923869

54

7.5. Identify problem with user control and propose solution

Identify what is problematic with user control. How can these problems be solved?

Currently it is not possible to deselect tower. There should be an evidence to currently controlled

instance, that will be deactivated when some other instance will be selected. Add evidence of manually

controlled tower.

7.6. Add evidence of manually controlled tower

Add attribute into class ManualTower of type ManualTower to represent reference to manually

controlled instance and initialize it to null. This attribute must be common to all instances of the

ManualTower class, so it must be defined with the static keyword. Inspect internal state of class (from

context menu of class ManualTower select menu item Inspect). What was added?

Commit: c4739460bed583d2126de066acc6b1149d022990

7.7. Change of manually controlled tower from centralized place

Add method changeControlledInstance to change manually controlled tower as class method of

class ManualTower (thus defined with the keyword static). Parameter of the method should be

reference to instance of ManualTower that will be manually controlled.

If the method parameter differs from the manually controlled instance (in a static attribute), use the

changeControll method with the correct parameters. First, use changeControll to set the original

manually controlled instance to false. Then change the static attribute of the ManualTower class of

the manually controlled instance to the parameter of the new method (i.e., the new manually

controlled tower). Finally, use the changeControll method to set the new manually controlled

instance to true. Don't forget to handle possible null references. This is because there could be a

situation where there is no manually controlled tower.

Test your solution. From context menu of class Tower select menu item with newly created method.

To fill a parameter you can use the same principle as in 5.5.

You should observe, that newly created class method is not consistently called, Instances of

ManualTower bypass the evidence when processing input, what causes problems.

Commit: 9dc6d8dd4dcbbd71edb8009c1a72403dea1a0ee0

7.8. Invoke change of manually controlled tower

Invoke ManualTower.changeControlledInstance(ManualTower) from relevant places. Lastly make

method ManualTower.changeControl(boolean) private. Observe changes in interface of instance of

class ManualTower similarly to 1.6.

Commit: c052bbb6aa4c7e690d4d8cf55d3831028fa2b9e3

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/c4739460bed583d2126de066acc6b1149d022990
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/9dc6d8dd4dcbbd71edb8009c1a72403dea1a0ee0
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-tower-defense/commit/c052bbb6aa4c7e690d4d8cf55d3831028fa2b9e3

55

3.3. Project ants
Ants is a card-based game for two players. Each player has its own tower and wall and resources such

as bricks, swords and magic. One turn of a game consists of an action, where the game offers the player

3 cards at random, and he chooses one. There are three types of cards – building cards, fighting cards

and magic cards. Building cards can be used to increase your own tower or wall, fighting cards to attack

an enemy player and magic cards to increase the number of own resources or steal enemy’s one.

Source codes are available at:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants

Learning design is available at:

http://learning-design.eu/en/preview/67aa1d089763d07f29809d42/details

3.3.1. Topics
Project Ants is divided into 6 topics:

1. Greenfoot environment, Class definition, basic work with classes 56

2. Encapsulation, composition, methods .. 57

3. Constructors, more complex method calls (working with graphic in Greenfoot) 59

4. Branching, conditional execution.. 60

5. Algorithm, enumerations, arrays .. 61

6. Handling user input, Game logic ... 64

Covered topics of light OOP are:

• classes, objects, instance

• methods, passing methods arguments

• constructors

• attributes

• static variables and methods

• encapsulation

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants
http://learning-design.eu/en/preview/67aa1d089763d07f29809d42/details

56

1. Greenfoot environment, Class definition, basic work with classes

The topic is devoted to project creation. Students will be capable to create new project in Greenfoot

environment, create class (as subclass of Actor), select background image, create instance of create

class and send it a message.

Create a new project. Give it a proper name (e.g. Ants) and save it to a proper location.

Table 11 summarizes comparison of workloads of first topic between projects Bomberman and Ants.

The total workload of both projects is the same in this part.

Table 11: Comparision of workloads of topic 1 between projects Bomberman and Ants

Bomberman 0h 20min Ants 0h 20min

Table 12 summarizes comparison of workloads of topic Class definition and basic work with classes

between projects Bomberman and Ants. The total workload of both projects is similar. The main

difference is in practice and assessment. However, as will be provided in the next section, some of the

practice tasks can be also given as assessments, what can balance it even more.

Table 12: Comparision of workloads of topic Class definition and basic work with classes between projects Bomberman and
Ants

Bomberman 4h 10min Ants 4h 05min

57

1.1. Introduction to Greenfoot

Create a new project in Greenfoot and introduce students with basic elements, UI etc. Initial state of

repository contains also assets you can use in project.

Commit: 2f0658d99a7abcbad6399f63c369dcd4c053af2a

1.2. Creation of class Wall

Create class Wall as a child of Actor. Introduce concepts such as classes, class hierarchy, instances etc.

to students.

Commit: cd163c8a3b1c952760a3a9e24ec6a322939a8ea6

1.3. Creation of class Tower

Similarly, as previous task, create class Tower. You can leave it to students as an individual assignment.

Commit: a0c1405183704f61156732c9bd55cdc921d95adc

1.4. Defining class attribute/field

Introduce terms field/attribute, primitive types, etc. to students. Try to identify fields in our classes

(lead students specifically to height) and define it in class Wall.

Commit: b6bd179478e1440249080d4cdcc00b4428bef080

1.5. Assigning value to attribute/field

Talk about field values and assignments and assign to wall height value 10.

Commit: 917861df37d13c09d840008e0c7f7d263ea56c95

1.6. Defining and assigning value to attribute/field for class Tower

As an individual work leave students to repeat the same for class Tower.

1.7. Class constructors

Talk about class instantiating and constructors. Move assignment of value to constructor.

Commit: a85930c312f079d65137eba8e147a8ba2b99e84f

2. Encapsulation, composition, methods

In this section, the basic principles of OOP are provided, specifically terms like encapsulation,

composition and methods. Students will learn how and why fields/attributes should be encapsulated

and not provided as public, how objects are composed with other objects and how to create methods

and call them. Students will create an object of Player in this section and give it fields of object type

– Wall and Tower.

Table 13 shows differences in two similar topics – Encapsulation from Bomberman project and

Encapsulation, composition and methods in Ants. As can be seen, Ants project gives more focus on

acquisition and on the other hand, Bomberman focuses more on production and discussion. This is

caused by the fact that this topic in ants consists of more than encapsulation, therefore also more

acquisition is required. The total workload is an hour shorter in Ants than in Bomberman as these

concepts are explained more shallowly but in the next sections, you would consolidate this knowledge.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/2f0658d99a7abcbad6399f63c369dcd4c053af2a
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/cd163c8a3b1c952760a3a9e24ec6a322939a8ea6
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/a0c1405183704f61156732c9bd55cdc921d95adc
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/b6bd179478e1440249080d4cdcc00b4428bef080
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/917861df37d13c09d840008e0c7f7d263ea56c95
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/a85930c312f079d65137eba8e147a8ba2b99e84f

58

Table 13: Comparision of workloads of topic Encapsulation, composition, methods between projects Ants and similar topic in
Bomberman - Encapsulation

Bomberman 4h 30min Ants 3h 25min

2.1. Defining methods

Talk about encapsulation, explain to students why it is not good practice to make for example wall

height as public property and rather encapsulate it in getter. Then create method getHeight() in

Wall.

Commit: 33af3b2d18a7b6c759c16b1bb0a4632f648a4d85

2.2. Defining methods with parameters

Explain method parameters and define method increaseHeight in wall, that will increment wall

height by specified number.

Commit: 50cfefc2747ee3150a16f66f439a9391fbff922a

2.3. Repetition for class Tower

As an individual work you can give students the task to repeat it also for class Tower. This task doesn’t

have an associated commit as the work is quite simple. In the next commit, there are also changes for

this task, so you can compare it if you are not sure about the result.

2.4. Object composition

Explain to students what composition is and why it is necessary to have object types as fields. Try to

identify such types for each player in this game. Then create object Player and give it fields/attributes

Wall and Tower.

Commit: 50b6b825952c02f9743e08bd1bb8415aa6f08eef

2.5. Creating instance of class

Explain constructors and create Wall and Tower instances in the Player constructor.

Commit: 873174a2851f5b5e6054f8071412058fc97e6e2e

2.6. Calling methods of instance

Explain to students how you can call methods of created instances. Then try to encapsulate them so

one is able to call it from outside of Player through player instance. Create methods getWallHeight,

getTowerHeight, and increaseWallHeight, increaseTowerHeight in Player object.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/33af3b2d18a7b6c759c16b1bb0a4632f648a4d85
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/50cfefc2747ee3150a16f66f439a9391fbff922a
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/50b6b825952c02f9743e08bd1bb8415aa6f08eef
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/873174a2851f5b5e6054f8071412058fc97e6e2e

59

Commit: b787d7f70ee6772b0185d5265f8ff56191a775e9

3. Constructors, more complex method calls (working with graphic in Greenfoot)

This section is focused on methods calls using calling of Greenfoot objects for drawing our instances.

Students will draw instances of wall, tower and player.

Table 14 shows comparison of this topic in project Ants and the most similar topic in project

Bomberman. Please note that these topics are a bit different, as ours shows basic work with

constructors and introduces graphics in Greenfoot and in project Bomberman it is more focused on

algorithm. Therefore, also the differences can be pointed out because of this.

Table 14: Comparision of workloads of topic Constructors, more complex method calls (working with graphic in Greenfoot)
between projects Ants and similar topic in project Bomberman, that is covered in topic Algorithm

Bomberman 4h 30min Ants 2h 45min

3.1. Drawing objects in Greenfoot – Wall

Introduce constants in Java to students – define wallSizeX and wallSizeY as a static final (the final

keyword ensures that the value cannot be changed, i.e. that it is a constant) attributes (constants) with

values 32 and 3. The constant is accessed as a static variable via the class name, e.g. Wall.wallSizeX.

Then implement function draw in Wall, where new image is created with given size and filled as

rectangle.

Commit: 3d728f73182b79b36d95a5bb1742cd870d82f906

3.2. Drawing objects in Greenfoot – Tower

The same is repeated for Tower, however it is more complicated as Tower consists also of roof what is

implemented as a polygon. Polygon requires an array of points. If you want, you can give students a

quick explanation, although arrays are not part of this section. Have a conversation with students

about the analogy of the terms array and list.

Commit: 98e55ae90a47fffd79152eabd80b6e13a15d91d5

3.3. Defining other properties of Player

Try to identify other properties of the Player – specifically the number of bricks, swords and magic

and the name of the Player. Then implement these properties in the Player and initialize them in

constructor.

Commit: 6d2b7771e8abe90117d61676215a39592ed41d39

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/b787d7f70ee6772b0185d5265f8ff56191a775e9
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/3d728f73182b79b36d95a5bb1742cd870d82f906
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/98e55ae90a47fffd79152eabd80b6e13a15d91d5
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/6d2b7771e8abe90117d61676215a39592ed41d39

60

3.4. Drawing Player

The last task in this section is drawing of a Player. You have to draw icons of each resource and the

number of such resource and also player’s name.

Commit: a07482609d4494babdab16e67e221523d8cb5683

4. Branching, conditional execution

This section focuses on branching of program and conditional execution of parts of our game. There

are several cases where this is necessary in this game, such as drawing the first player in the left part

of screen and the second in the right etc.

Table 15 shows differences between similar topic in Bomberman and Ants. As can be seen,

Bomberman project gives greater emphasis on discussion as project Ants. Also, the total workload in

hours is approximately half that in Bomberman. This is caused by the fact that branching is split into

multiple sections in this project – this section is more of introduction and basic usage of branching.

Table 15: Comparision of workloads of topic Branching, conditional execution between projects Bomberman and Ants

Bomberman 5h 15min Ants 2h 20min

4.1. Creating class Game

Before we start to put branching logic in our code, we need to create an object Game that will hold

both players and, in the future, will manage game logic, turn switching, card execution etc. For now,

we will put there properties for two players and create their instances in the Game class constructor.

Commit: 06aaf814f2adcc0cda1dd20f5993eea3fcfcbf2e

4.2. Branching, conditioning execution of code – players are shown on corresponding sides of the

game plan

Now we should introduce a new attribute for our Player – the information whether the player should

be plotted on the left or right side of the screen. We will use this information to set corresponding

properties of player – position of Wall, Tower, “hud” and name. This offset should be then added to

the redraw method.

Commit: c84a9065d8a5c251b2f25c61720ed8e54eb5f1d7

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/a07482609d4494babdab16e67e221523d8cb5683
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/06aaf814f2adcc0cda1dd20f5993eea3fcfcbf2e
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/c84a9065d8a5c251b2f25c61720ed8e54eb5f1d7

61

4.3. Adding instances to world

The next task creates an initial view of the Player class instances for the game and instantiates the

game in the world.

Commit: f6102678b62423d9888f7beea802129d550e19cd

4.4. Adding instances to world 2

For the Player to be correctly drawn in the Game, we need to add Wall and Tower to the world and

call redraw function in act method. Here you can explain execution of game loop (act method).

Commit: eb53be86180b4f3e043ea5b0363fccef559d4c58

4.5. Conditioning execution code only one time

When you try to run the Game after the last task, you can encounter a problem – objects are added to

the world multiple times in a second. You can give students assignments to fix this problem or fix it

with them. One of the solutions is to introduce a new boolean attribute, that would store information

if the initial object added to the world was executed or not and after first execution of act method this

property is set to true.

Commit: 707304650909d8450bac27a5264cdaef0e103c6a

5. Algorithm, enumerations, arrays

This section discusses the next concepts, like algorithm, enumerations, arrays and loop over array of

elements. In this section, students will implement cards that will be used to play the game.

Table 16 contains comparison between similar topics in projects Ants and Bomberman. As can be seen,

project Ants gives more focus on production and practice and slightly more on acquisition. Also, the

total workload is about two times bigger than in the project Bomberman. This is caused by the fact

that this topic consists of more than working with lists, but also introduces concepts like enumerations

etc.

Table 16: Comparision of workloads of topic Algorithm, enumerations, arrays in project Ants and similar topic in projects
Bomberman - Lists

Bomberman 3h 00min Ants 6h 05min

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/f6102678b62423d9888f7beea802129d550e19cd
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/eb53be86180b4f3e043ea5b0363fccef559d4c58
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/707304650909d8450bac27a5264cdaef0e103c6a

62

5.1. Implementing card class

Firstly, we can discuss with students how the final game would work, and design Card object. You

should come to a solution that will hold information about card type, its requirements, effect and some

description. Then you can create such object as a child of Actor.

Commit: 928eabaebc330c865d9eb1e28d1a03453c3031ba

5.2. Enums

In the previous task, you created card type as a field in Card object. Discuss with students what type

this field should be – String, int, etc. and you can introduce enums to them. Enum is a data type with

a finite set of named values (e.g. for days of the week it is the values: Monday, Tuesday, Wednesday,

Thursday, Friday Saturday and Sunday). Create CardType enum with them and specify its individual

values.

Commit: d983729a3c57d73ef2e028e39d7f067a725ba1d0

5.3. Branching – switch

Now we should implement drawing of a Card. This is based on the card type, to visually divide cards.

You can show students how this would be done using if and compare it with switch. There are three

card types – building cards, attacking cards and magic cards. Based on this category, background is

selected. In case we will do it using if statement, the code should look like this:

if(type == BuildTower || type == BuildWall || type == IncreaseBricks) {

 background = new GreenfootImage(“building-card.png”);

} else if(type == IncreaseSwords || type == Attack)

...

This can be replaced by switch statement. Java switch statement works in such a way, that specific

branch will be executed, however it won’t stop executing other branches unless you call break

statement. In our case this allows us to merge multiple branches together and write our assignment

statement only for the last card type of such category. Therefore, this code:

switch (type) {

 case BuildTower:

 background = new GreenfootImage(“building-card.png”);

 break;

 case BuildWall:

 background = new GreenfootImage(“building-card.png”);

 break;

 case IncreaseBricks:

 background = new GreenfootImage(“building-card.png”);

 break

 ...

}

can be written also in a way we use in this taks:

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/928eabaebc330c865d9eb1e28d1a03453c3031ba
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/d983729a3c57d73ef2e028e39d7f067a725ba1d0

63

switch (type) {

 case BuildTower:

 case BuildWall:

 case IncreaseBricks:

 background = new GreenfootImage(“building-card.png”);

 break

 ...

}

Commit: 48e9df2d8eb83d6a88d0c86667c9b43497f065f2

5.4. Array

Game object should hold Cards. This can be done by introducing three fields of Card type (you can also

extend hand – i.e. the number of Cards Game offers to Player in one turn – to more of them). You

can explain to them that it would be impossible to store even more cards, when we decide to extend

hand even more and you can explain the concept of arrays to students. You should also create an

instance of an array.

Commit: 2261666afe20ba205d252c8540ff6aa22177751b

5.5. Simplifying instantiating of cards – CardFactory

When creating new Cards, a lot of information should be provided. You can try to find a solution to

this problem. One of the solutions is to create a CardFactory that will hold instances for each card

and implement clone method on Card. Therefore, new Cards can be created using this CardFactory

and cloning existing ones.

Commit: c3135c874c2c1181b4448e338c977ed1c9fba317

5.6. Random – Instantiating of random card

After implementing CardFactory, also clone method should be implemented, as were discussed

before. The CardFactory should also be able to give instances of random Card. You can explain

random number generator and implement method, that will clone random card and also random base

card (base cards are cards with no cost - this is implemented so as we can guarantee Player can

always play at least one of provided Cards).

Commit: 462f2a8583b37636d4a9c6fff2ddd09520485d51

5.7. Loop over array

Now we have to create an instance of the CardFactory in the game and implement generating of

Cards and clearing them (removing them from world) - when explaining this, you can introduce some

form of loop.

Commit: fd7dae3ec277ef66986f63ae8c85481c4c9f22d3

5.8. Drawing of Game

The last task in this section is to implement the drawing of the whole Game. During this, we should also

prepare our Cards using a previously created method and also introduce information if the first player

is active. Drawing of a Game should consist of drawing of all Cards, and drawing information what

player is currently on turn.

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/48e9df2d8eb83d6a88d0c86667c9b43497f065f2
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/2261666afe20ba205d252c8540ff6aa22177751b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/c3135c874c2c1181b4448e338c977ed1c9fba317
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/462f2a8583b37636d4a9c6fff2ddd09520485d51
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/fd7dae3ec277ef66986f63ae8c85481c4c9f22d3

64

Commit: f7f6b68566ebe2a1c66bc284c3542e562489100b

6. Handling user input, Game logic

This section focuses on handling user input – how to get, for example, the players name from user,

how to handle clicking on cards and how to finish game logic. In this section also some advanced

concepts are introduced (singleton).

Table 17 shows comparison between this topic and the most similar topic in the project Bomberman

– Algorithm. Please note that as this is the last topic of this project, many concepts introduced in the

project Bomberman are already known to students at this point of this project. Therefore, there is

markedly less focus on investigation and discussion than in the project Bomberman and a lot more

production.

Table 17: Comparision of workloads of topic Handling user input, Game logic in project Ants and similar topic in project
Bomberman - Algorithm

Bomberman 4h 10min Ants 3h 30min

6.1. Input names from user

In this task, you should explain dialog windows (Greenfoot ask method) to students and set Player

names according to these inputs.

Commit: 17b9237fdabb19bb16d7c276fa06ce242dac3404

6.2. Static instance of class – Game as a singleton

Game objects should be constructed exactly one time – you can discuss this problem with students, and

you can provide a solution in the form of singleton – static instance of Game object and private

constructor. Singelton is used in cases when we want only one instance of a certain class to exist in the

whole application. A well-known example of a singleton is e.g. the Package in the operating system).

This is required because when a Player uses a card, there should be a reference to the Game so that

clicking on it can be handled correctly, as will be discussed in the next part. The other way to implement

it (without singleton) is to provide instance of Game to the constructor of the Card and the

CardFactory.

Commit: fd4369bd7b88f15119354d7f243c9093c769a964

6.3. Handle input click on card

Mouse click is handled by calling Greenfoot.mouseClicked method in act. When clicked, you should

call method useCard of Game and send reference to self (this).

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/f7f6b68566ebe2a1c66bc284c3542e562489100b
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/17b9237fdabb19bb16d7c276fa06ce242dac3404
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/fd4369bd7b88f15119354d7f243c9093c769a964

65

Commit: d1846818d19011202ed63672336b14886fede9d1

6.4. Implementing getters of Card and Player

Before implementing the rest logic for game, we need also some more getters and setters for Player

and Cards. So, we should implement them (this should be no problem for students since it was done

before).

Commit: 034563a26c04c4eef2a0dea9cc57a3c309483df4

6.5. Implementing supporting method for Player and fix in World

As the Game is now singleton, we have to add it to world in MyWorld class. The next task is to implement

a supporting method for the player that will be used to receive some amount of damage. Player

should decrease Wall or Tower according to it.

Commit: e0d283ee339506ef34366a2b689aba1c17f6391c

6.6. Implementing game logic

Finally, we have to implement game logic – turn method, that will consist of the following steps:

1. Check if one player wins – that means if either player tower reaches height 100 or falls under

the value 0. If one of these conditions are met, we will display winning screen and exit game

loop – call return statement.

2. Set active player to other one – just flip value of isPlayer1Active attribute.

3. Prepare cards for the next player – as we have already created method prepareCards, all we

have to do in this step is to call it.

4. Handle players turn – specifically clicking on cards. As Card itself is able to listen to clicking on

it, all we have to do is call draw method of game, which draws prepared cards.

5. Redraw players – this is done using method redraw for each player.

Then we need to implement the useCard method in Game using switch. This switch should contains

branch for each card type and handle its execution. There are 7 card types: BuildTower, BuildWall,

IncreaseBricks, IncreaseSwords, Attack, IncreaseMagic and StealBricks. Let us take a look at

the first card type – BuildTower. In this case we have to check if player can play this card (i.e. number

of his bricks is greater than or equal to card requirements), increase hit Tower height and decrease

hit bricksNumber to card requirements. So the code can looks like this:

if (activePlayer.getBricksNumber() >= card.getRequirements())

{

activePlayer.increaseTowerHeight(card.getEffect());

 activePlayer.setBricksNumber(

activePlayer.getBricksNumber() - card.getRequirements()

);

}

The other card types are similar:

- BuildWall – we have to check for players bricksNumber and we will increase Wall height.

- IncreaseBricks – we don’t have to check for anything and will increase bricksNumber

- IncreaseSwords – we don’t have to check for anything and will increase swordsNumber

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/d1846818d19011202ed63672336b14886fede9d1
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/034563a26c04c4eef2a0dea9cc57a3c309483df4
https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/e0d283ee339506ef34366a2b689aba1c17f6391c

66

- Attack – we have to check for players swordsNumber and call receiveDamage of inactive

player

- IncreaseMagic – we don’t have to check for anything and will increase magicNumber

- StealBricks – we have to check for magicNumber, decrease inactive player bricksNumber

and increase active player bricksNumber.

It is possible to create also other card types – it is for students’ imagination. These are some basic ones.

Finally, we have to call turn method after playing a card to ensure game logic.

As a last step, we should implement a winning screen. This is like other drawings in this project, so it is

upon you to either create it with students or leave it for them.

To wrap it up, there are also some fixes in the Player and Tower for the sake of code cleaning.

Commit: 9c91d4613fe0da1ff9c9960bf96fe7c27988fcf1

https://gitlab.kicon.fri.uniza.sk/oop4fun/project-ants/commit/9c91d4613fe0da1ff9c9960bf96fe7c27988fcf1

67

4. Bibliography

[1] „Git,“ 1 10 2023. [Online]. Available: https://git-scm.com. [Cit. 1 10 2023].

[2] „GIT, SVN, mercurial – Google Trends,“ 2 10 2023. [Online]. Available:

https://trends.google.com/trends/explore?cat=5&date=today%205-

y&q=GIT,SVN,mercurial&hl=sk. [Cit. 2 10 2023].

[3] „GitHub: Let’s build from here · GitHub,“ 1 10 2023. [Online]. Available: https://github.com. [Cit.

1 10 2023].

[4] „The DevSecOps Platform | GitLab,“ 1 10 2023. [Online]. Available: https://about.gitlab.com. [Cit.

1 10 2023].

68

5. Attachments

5.1. Export of learning design for project Bomberman
See file LD_Bomberman.pdf

5.2. Export of learning design for project Tower defense
See file LD_Tower_defense.pdf

5.3. Export of learning design for project Ants
See file LD_Ants.pdf

