

LEARNING DESIGN WITH NEW CORE IDEA OF

(TEACHING) PROGRAMMING

 PR2 - REPORT

1

Project Object Oriented Programming for Fun

Project acronym OOP4FUN

Agreement number 2021-1-SK01-KA220-SCH-00027903

Project coordinator Žilinska univerzita v Žiline (Slovakia)

Project partners Sveučilište u Zagrebu (Croatia)

 Srednja škola Ivanec (Croatia)

 Univerzita Pardubice (Czech Republic)

 Gymnazium Pardubice (Czech Republic)

 Obchodna akademia Povazska Bystrica (Slovakia)

 Hochschule fuer Technik und Wirtschaft Dresden (Germany)

 Gymnasium Dresden-Plauen (Germany)

 Univerzitet u Beogradu (Serbia)

 Gimnazija Ivanjica (Serbia)

Year of publication 2023

2

Table of contents

1. Introduction .. 6

2. Methodology ... 8

3. Analyze Teaching/Learning Materials ... 9

3.1. Introduction ... 9

3.2. Conducting the analysis ... 9

3.3. Presenting the results .. 12

3.4. Conclusions on the teaching/learning materials .. 26

4. Literature Review .. 28

4.1. Introduction .. 28

4.2. Conducting the analysis .. 28

4.3. Literature review results .. 29

4.3.1. Summary of teacher skills and competences ... 33

4.3.2. Student's previous skills and background knowledge .. 34

4.3.3. Summary of other important aspects and guidelines for future investigation 35

4.3.4. Innovative forms of instruction/knowledge transfer ... 36

4.3.5. Methods and approaches ... 37

4.3.6. Tools .. 38

4.4. Conclusions on the literature review ... 39

5. Experiences from Students ... 40

5.1. Introduction .. 40

5.2. Interview design ... 40

5.3. Conducting the interview ... 46

5.4. Results of the analysis.. 47

5.5. Conclusions on experiences from students ... 49

6. Empirical results from UNIZA .. 52

6.1. Introduction .. 52

6.2. Active motivational workshops (Project LOOP) ... 52

6.3. Feedback analysis of Winter school of programming .. 54

6.4. Conclusions on empirical results from UNIZA ... 56

7. Empirical results from GYPCE ... 57

7.1. Introduction .. 57

7.2. Greenfoot test results ... 57

7.3. Conclusions on empirical results from GYPCE .. 62

9. Innovative teaching and learning ideas .. 63

3

9.1. Teaching and learning approaches.. 63

9.2. Teaching and learning materials related to object-oriented programming (OOP) 64

10. Aligning results with PR1 results .. 65

10.1. PR1 and PR2 results allignment ... 65

10.2. Final remarks on the alignment .. 69

11. OOP4Fun Learning Design .. 71

11.1. Learning design methodology ... 71

11.2. Innovative teaching scenarios for OOP4Fun .. 72

11.2.1. TS1: Introduction to Greenfoot: Exploring Game Development with Creativity.. 74

11.2.2. TS2: Exploring Classes and Objects through Game Development with Greenfoot

 77

12. Conclusions .. 80

13. References .. 83

4

List of tables

Table 1. Criteria used to include papers in literature review ... 29

Table 2. List of paper included in literature review for project purposes .. 30

Table 3. Categorization and summary of student's previous skills and background knowledge . 34

Table 4. Perceived course knowledge impact enumeration ... 48

Table 5. Coures everage grades ... 48

Table 6. Experience in programming languages ... 58

Table 7. Mapping gaps to possible teaching approaches .. 65

Table 8. Template for documenting learning scenarios .. 73

5

List of figures

Figure 1. Preliminary analysis of educational resources in MERLOT about programming and

game-base programming ... 10

Figure 2. Identification of educational resources in MERLOT irrelevant for programming 11

Figure 3. Preliminary analysis of educational resources in OER Commons about programming and

game-base programming ... 12

Figure 4. Preliminary analysis of educational resources in Edutorij with informatics topics 12

Figure 5. Number of papers in literature review by years ... 30

Figure 6. Request to approve the interview .. 41

Figure 7. Approval from the Committee for Ethical Matters .. 42

Figure 8. Spreadsheet with collected data (part 1) ... 46

Figure 9. Spreadsheet with collected data (part 2) ... 47

Figure 10. Teacher skills - comparison .. 51

Figure 11. Number of participants on workshops ... 53

Figure 12. Ratio of participants from grammar schools on workshops .. 53

Figure 13. Ratio of participants from technical schools on workshops... 54

Figure 14. Personal opinion about the lector ... 55

Figure 15. Personal opinion about the amount of new information students learned 55

Figure 16. Ratio of personal opinion about the amount of new information students of grammar

schools learned ... 55

Figure 17. Ratio of personal opinion about the amount of new information students of technical

schools learned ... 56

Figure 18. Ratio of personal opinion about the amount of new information students of vocation

schools learned ... 56

Figure 19. Greenfoot as first programming experience .. 58

Figure 20. Experience in programming languages .. 58

Figure 21. Understanding of Greenfoot environment .. 59

Figure 22. Time for making own computer game .. 59

Figure 23. Intrigation with Greenfoot environment ... 60

Figure 24. New knowledge .. 60

Figure 25. Benefit of Greenfoot ... 60

Figure 26. Friendliness of Greenfoot environment ... 61

Figure 27. Greenfoot applicability in school ... 61

Figure 28. Favoritization of Greenfoot .. 61

Figure 29. TS1: Introduction to Greenfoot in learning design ... 77

Figure 30. TS2: Exploring classes and objects in learning design .. 80

6

1. Introduction

The goal of this project result was to analyze and propose the innovative teaching and learning

methods and approaches that could be used when teaching rather abstract concepts of object

oriented programming in secondary schools. After we have identified the gap between the

knowledge of finished secondary school students and the expectations from the university

teachers, we would like to introduce a novel and contemporary approach in teaching object

oriented principles in high schools.

Although it is rather challenging to define what is contemporary in the process of

learning and teaching, since some old methods are becoming attractive, while some newer

are replaced and modified, we suggest to start from the list presented in the The Book of

Trends in Education 2.0, especially elements listed under chapter III Modern education is

collaborative.

 Several concepts are current buzzwords, such as project based learning, peer

learning, team teaching, inquiry learning, flipped classroom, problem based learning,

interdisciplinary learning, etc. Among the listed concepts, project based learning is one of the

more comprehensive ones which, if applied in its full form, utilizes aspects which are present

in other mentioned concepts. Following are several examples from each of the concepts:

● peer learning - during the project based learning students often work in teams, thus

learning from each other. Teams also present their results so peer learning is further

facilitated.

● team teaching - in project based learning teachers can work in pairs in the same

classroom. This way they support interdisciplinary learning and facilitate holistic

understanding of the topic at hand.

● inquiry learning - while working on their projects students often explore different

questions which arise in the process. Inquiry learning can facilitate student’s process

of discovery, especially if they are seeking for new ideas or possible solutions.

● flipped classroom - goes hand in hand with demanding projects. Teachers can facilitate

students in project development through guidance and instructions related to

acquisition of basic knowledge at home, while more complex application and testing

will be conducted in school with professional assistance from the teacher.

● problem based learning - projects are often related to real world problems and students

need to identify the issue, deduct what they know and what they must solve (learn).

● interdisciplinary learning - projects which are used in project based learning are often

complex and utilize knowledge from different subjects. This supports team teaching

and coordination among teachers of different subjects. Further, such an approach

provides support for the application of school knowledge in real world situations.

Also, a modern approach in designing lectures, especially those for elementary and

highschool education is to define and to share teaching scenarios. Teaching scenarios (TS)

“are perceived as a contemporary pedagogical approach which empowers individualisation of

the teaching process by taking into consideration different student’s needs. TS based teaching

is focused on relevant knowledge and skills for the students, including those of need for the

digital society. Careful planning of TS can remedy possible pitfalls and shortcomings which

http://www.ydp.eu/assets/pdf/The-Book-of-Trends-in-Education-2.0-YDP.pdf
http://www.ydp.eu/assets/pdf/The-Book-of-Trends-in-Education-2.0-YDP.pdf

7

might influence the teaching process.” For better understanding of TS we recommend the

following sources of relevant research and literature, such as Hajdin, G. et al. (2022), Hajdin,

G. et al. (2018) and Jerbić-Zorc, G. et al. (2021).

In the context of this project result we would like to analyze best practices and prepare

several teaching scenarios that would serve as an integral point of the following project

activities including curriculum and teaching materials development in PR3, PR4 and PR5.

Upon defining novel and innovative approaches and defining teaching scenarios we will initiate

a learning design (LD) process by use of modern LD tools. This process will be finished in the

later phases of the project after the curriculum is defined and will enable the team to have a

comprehensive overview of the whole course along with the learning outcomes, topics,

students’ and teachers’ activities and workload.

 This chapter reports on the activities and results that we obtained during the work on

second project result (PR2) and is designed as follows. Firstly, we describe unique teaching

ideas by performing three comprehensive analyses aiming at: (1) analyzing teaching and

learning materials, educational resources and existing teaching scenarios available in digital

repositories and other sources; (2) performing a tertiary study on existing literature reviews in

the domain of teaching and learning programming and (3) performing a semi-structured

interviews with final-year students of Faculty of organization and informatics in order to

understand what teaching and learning approaches they experienced during their study they

find the most useful and results-giving. Additionally, we also give an overview of empirical

results obtained from UNIZA who performed several workshops on using an innovative tool in

teaching game programming and asked participants for feedback. Finally, we summarize the

findings, align them with the results of gap analysis and propose novel teaching and learning

scenarios in the form of teaching scenarios templates and learning design artifacts.

8

2. Methodology

zstapic@foi.hr

In this chapter, we outline the scientific methodology employed in our analysis, which aimed

at unveiling unique teaching ideas through a multifaceted approach. The research design was

carefully crafted to encompass four comprehensive analyses, each contributing a unique

perspective to the analyzed area.

1. Analysis of Teaching and Learning Materials

To gain insights into existing teaching and learning practices, we initiated our research by

meticulously analyzing a diverse array of teaching and learning materials. This included a

thorough examination of digital repositories and other educational sources, allowing us to

understand the prevailing pedagogical resources and methodologies in the domain of

programming education. By scrutinizing these materials, we aimed to identify trends and

innovative practices that could inform the development of novel teaching strategies.

2. Tertiary Study on Existing Literature Reviews

The second prong of our research methodology involved a comprehensive tertiary study of

existing literature reviews within the domain of teaching and learning programming. This step

was crucial for synthesizing the cumulative knowledge and insights provided by previous

research efforts. By critically reviewing and analyzing relevant literature, we aimed to extract

key findings, theoretical frameworks, and emerging trends. This not only helped us build a

solid theoretical foundation for our analysis but also ensured that our analysis was aligned

with the broader discourse in the field.

3. Semi-Structured Interviews with Final-Year Students

Recognizing the significance of firsthand experiences, we conducted semi-structured

interviews with final-year students from the Faculty of Organization and Informatics. These

interviews were designed to elicit detailed accounts of the students' experiences with various

teaching and learning approaches throughout their academic journey. By engaging in open-

ended discussions, we sought to understand the students' perspectives on the effectiveness

and outcomes of different pedagogical methods. This qualitative approach allowed us to

capture nuanced insights and uncover hidden aspects that may not be apparent through other

analytical methods.

4. Analysis of Empirical Results from UNIZA

In addition to the aforementioned three analyses, our analysis involved the empirical

investigation of the outcomes derived from workshops conducted at the University of Žilina

(UNIZA). Three separate workshops were organized, each with participants from various high

schools and different academic years. The primary objective of these workshops was to

assess the motivational potential of a pedagogical approach integrating interesting topics,

Object-Oriented Programming (OOP), and game development. The central question guiding

this segment of the research was whether this combination could effectively generate interest

in programming and STEM fields among participants.

9

3. Analyze Teaching/Learning Materials

dijana.plantak@foi.hr, mmatijevi@foi.hr, goran.hajdin@foi.hr, dperas@foi.hr, UNIZA, UNIBG

3.1. Introduction

In order to investigate teaching ideas in teaching programming that exist so far, the team has

set a goal to explore educational resources (ERs) and existing teaching scenarios (TSs). In

Croatia, there is a central repository of open educational resources with teaching scenarios

for teachers and digital content for students in primary and secondary schools

(https://edutorij.e-skole.hr/). However, for the field of informatics, there are only two such

scenarios for the teachers in secondary school and one digital educational content for the

students, so a proposition was made to explore educational resources in worldwide

databases, such as Merlot.org (MERLOT) and OER Commons.

Digital repository Merlot.org is one of the oldest repositories with tens of thousands of

discipline-specific learning materials for various educational levels, consisting of a wide variety

of material types and technical formats. All the materials in MERLOT are reviewed for

suitability for retention in the collection, some of them by editors and some of them by peer

reviews.

OER Commons is a public digital library of open educational resources. Open

Educational Resources (OER) are teaching and learning materials that can be freely used and

reused at no cost, and without needing to ask permission. OER Commons includes over

50,000 high-quality OER, like full university courses, interactive mini-lessons and simulations,

open textbooks but also lesson plans, worksheets and activities.

In the first phase of the exploration, the decision was made to review three educational

resources in Croatian’s Edutorij and explore MERLOT to gain insight about the structure and

the content of existing educational resources indexed in that database, decide if deeper

analysis of the particular material is needed and then to define additional criteria to perform

deeper analysis of chosen materials. After reviewing MERLOT and Edutorij, the review of OER

Commons resources was performed.

The next step was to perform additional analysis of chosen materials from all the

repositories, to get better insight of used teaching methods and get possible directions and

ideas for teaching approaches in teaching object-oriented programming. The final step will be

inclusion of the partners in performing the analysis of their national repositories with the same

set of criteria.

3.2. Conducting the analysis

When the MERLOT database was searched with the keyword "programming", 6,140 search

results were shown. So, the search was narrowed with the following filters: audience (high

school), review (editors), has no cost. Excluded from the search were commercial courses like

Udemy and presentations from the conferences in video format. Another search with the same

filters included keywords "game-based programming". Altogether, 43 links to the resources

indexed in MERLOT were found.

All 43 materials were inspected and described in a table according to the following

criteria: direct link to the learning material, years of upload and modification in MERLOT,

https://edutorij.e-skole.hr/
https://www.merlot.org/
https://www.oercommons.org/
https://www.merlot.org/
https://www.oercommons.org/
https://www.oercommons.org/
https://edutorij.e-skole.hr/

10

authorship, material type, technical/media format, short description of the material,

identification of the content that could be useful for OOP4Fun (topic, innovative teaching,

methods or tools) and a decision YES/NO if the material needs to be further explored.

Materials included topics such as "C++ Tutorials", “PHP for the Novice Programmer”,

"Greenfoot" etc. which can be seen in Figure 1. Preliminary analysis was partially done in

Croatian language.

Figure 1. Preliminary analysis of educational resources in MERLOT about programming and
game-base programming

Among 43 materials, there was also a material "Career Development Event Tabulations

Program" and other 13 materials that had the word "program" in its title. After the preliminary

analysis, those 14 resources were found to be irrelevant.

11

Figure 2. Identification of educational resources in MERLOT irrelevant for programming

A database OER Commons was searched with the same keywords as the database MERLOT:

the first search with the keyword "programming" and the next search with a keyword "game-

based programming". Both search results were narrowed with the filters similar to those used

for filtering MERLOTs’ results: audience (high school), user (teacher), subject area (computer

science), material type (activity/lab, homework/assignment, interactive, lesson plan, module,

teaching/learning strategy). Altogether, after removing duplicates 44 links to the resources

indexed in OER Commons were found.

Resources were reviewed with the same criteria as in MERLOT (see Figure 3): direct

link to the learning material, year of upload to the OER Commons, authorship, material type,

technical/media format, short description of the material, identification of the content that could

be useful for OOP4Fun (topic, innovative teaching, methods or tools), in addition to material

license. Finally, a decision YES/NO was made if the material needs to be further explored.

12

Figure 3. Preliminary analysis of educational resources in OER Commons about
programming and game-base programming

In the third repository, Croatian repository Edutorij, three educational resources were found

related to informatics topics in general: one was an educational resource aimed at the students

and two were teaching scenarios for the teachers in secondary school. These materials were

also reviewed according to the criteria set up for MERLOT and OER Commons (see Figure

4).

 Figure 4. Preliminary analysis of educational resources in Edutorij with informatics topics

3.3. Presenting the results

In the first round of analysis, out of 29 learning/teaching materials related to programming or

game-based programming in MERLOT and 44 materials in OER Commons, 10 materials were

found relevant from MERLOT and 6 from OER Commons to be included in a deeper analysis.

The next step of the team was to explore those 16 materials + 3 from Edutorij with the

focus on: a) topic of object-oriented programming and b) innovative pedagogical practices,

https://edutorij.e-skole.hr/

13

methods and tools such as problem based learning, inquiry-based learning, game-based

learning, flipped classroom, project based learning, peer learning, etc… Materials were

explored from the perspective of the lectures, exercises, tools and evaluation.

Each material was reviewed by two team members: one with the main background in

programming and the other with the main background in didactics and/or e-learning methods.

The goal was to identify good and innovative practices in teaching (object-oriented)

programming that would contribute to PR2 goal: create learning designs with new teaching

approaches in teaching of OO programming.

In the next tables, a brief description of nine (9) educational resources that were

identified as valuable to contribute to the PR2 goal is given.

Alice Programming: Materials from Duke University (MERLOT)

Title of learning/teaching

material with the URL on

the repository

Alice Programming: Materials from Duke University

Direct URL to the learning

material

https://www2.cs.duke.edu/csed/alice09/

Alice 2: https://www2.cs.duke.edu/csed/alice09/tutorials.php

Alice 3: https://www2.cs.duke.edu/csed/alice09/tutorialsAlice3.php

Date: added 2015

Date: modified 2015

Author(s) Susan Rodger, Duke University

Material Type Online course

Media/Technical Format
Web, Alice 2 i 3 applications and tasks followed by video examples and

Alice solution files.

Short description of the

material

Alice is a tool that helps budding programmers to learn programming in a

visual environment. These materials cover Alice 2 and Alice 3 and

include videos, Powerpoint slides and handouts. Teachers can develop a

short course in either of these Alice versions based on this material. Alice

can also be used as a tool by teachers to develop lessons on topics such

as reading, geography, math and other academic areas...

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Alice offers a lot in the context of learning OOP. In particular, setting up a

"computer game"/animation scene involves clarifying the context of the

procedure and the class of objects, and visually shows the execution of

the procedure on the objects. The form of the course can certainly be

used. Thus, tasks with attached files of the beginning/end of solving and

videos that deal with these tasks.

Need for additional

analysis?

YES

Lectures

Materials cover approximately 15 hours of relevant OOP topics which are

supported with clear structure, short video tutorials, slides, PDF-s and

time estimates. This can be used either by teacher or student.

Exercises

Materials are not traditionally split between lectures and exercises but

intervene those two concepts. Materials are practical, on-hand

experience focusing on programming in Alice environment.

https://www.merlot.org/merlot/viewMaterial.htm?id=995897
https://www2.cs.duke.edu/csed/alice09/
https://www2.cs.duke.edu/csed/alice09/
https://www2.cs.duke.edu/csed/alice09/tutorials.php
https://www2.cs.duke.edu/csed/alice09/tutorials.php
https://www2.cs.duke.edu/csed/alice09/tutorialsAlice3.php
https://www2.cs.duke.edu/csed/alice09/tutorialsAlice3.php

14

Tools

We suggest using Alice 3. Although Alice 2 is also shown in the

materials, it's much older and not probably wouldn't be so appealing to

younger pupils.

Evaluation

7 assessments are given in the form of starting scene, final scene and

Powerpoint presentation for reaching the objective. No automatic grading

is implemented, students are expected to manually check their solution.

Other important aspects

This material is very interesting because it connects video game

development and OOP using simple coding blocks. It's easy to derive an

actual object-oriented way of thinking using Alice and it's objects and

scenes.

Final decision (what to use

for OOP4FUN)

Yes, good structure and clear examples.

VB.Net teaching modules (MERLOT)

Title of learning/teaching

material with the URL on

the repository

VB.Net teaching modules

Direct URL to the learning

material

http://web.archive.org/web/20071020032144/http://bpastudio.csudh.edu/f

ac/lpress/vbmodules/

Date: added 2005

Date: modified 2021

Author(s) Larry Press, CSUDH (California State University Dominguez Hills)

Material Type Collection

Media/Technical Format
Archived website with table of contents links

Short description of the

material

This is a complete first course in programming, using VB.NET using

VB.NET. Student outcomes using this material are slightly better than

using a standard textbook.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

The topic names/descriptions are very impressive, such as

"Programming Terminology: Objects", "Object Terminology in the User

Interface", "Object Terminology in the Real World", "Explaining Real

Objects the Geek Way"...

The meaning of the objects is excellently explained.

Need for additional

analysis?

YES

Lectures
Lectures are structured in topics, mainly textual, but with visual

examples when necessary.

Exercises
Named Assignments. There are practical examples of how objects are

used and how they should be seen. From a programmer's perspective.

Tools

Named Demonstration programs related to the Assignments. They are

simple Windows Forms applications that require no administration rights

to run.

https://www.merlot.org/merlot/viewMaterial.htm?id=84282
http://web.archive.org/web/20071020032144/http:/bpastudio.csudh.edu/fac/lpress/vbmodules/
http://web.archive.org/web/20071020032144/http:/bpastudio.csudh.edu/fac/lpress/vbmodules/

15

Evaluation
No classical questions or quizzes. Filling out the sentences is

implemented in the Assignments.

Other important aspects Interesting examples for each topic and exercise.

Final decision (what to use

for OOP4FUN)

Yes, interesting examples for highschool students.

Greenfoot (MERLOT)

Title of learning/teaching

material with the URL on

the repository

Greenfoot

Direct URL to the learning

material

https://www.greenfoot.org/door

Date: added 2008

Date: modified 2018

Author(s) Poul Henriksen and Michael Kölling, University of Kent

Material Type Simulation

Media/Technical Format Web site

Short description of the

material

Greenfoot teaches object orientation with Java. Create 'actors' which live

in 'worlds' to build games, simulations, and other graphical programs.

Greenfoot is visual and interactive. Visualization and interaction tools are

built into the environment. The actors are programmed in standard

textual Java code, providing a combination of programming experience

in a traditional text-based language with visual execution.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Software for learning programming in a simple and fun way. There is a

book: Introduction to Programming with Greenfoot, Object-Oriented

Programming in Java with Games and Simulations. On the web is the

Greenroom - a teacher community and provides resources (slides,

worksheets, project ideas, tests, etc.) and a teacher discussion forum.

You need to register and log it to look at the community because the

OOP4Fun project application mentions Greenfoot.

Need for additional

analysis?

YES

Lectures

Greenfoot does not have materials separated in traditional lectures and

exercises. It does include relevant instructions which support the

exercises.

Exercises

Exercises include motivation for students primarily focusing on games.

They usually start with gaming elements in use and build upon the

presented scenario or explain and extend its functionality.

Tools

Greenfoot is a comprehensive environment for development and run of

games.

Evaluation Not included. It could be easily created for project based learning.

Other important aspects

https://www.merlot.org/merlot/viewMaterial.htm?id=346924
https://www.greenfoot.org/door

16

Final decision (what to use

for OOP4FUN)

YES

DOS, 1st grade high school - 3. Computer thinking and programming (Edutorij)

Title of learning/teaching

material with the URL on

the repository

DOS, 1. razred SŠ - 3. Računalno razmišljanje i programiranje

Direct URL to the learning

material

https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-

guest/e2fa002d-439a-484d-b2c6-6a3f4894a300/index.html

Date: added 2021.

Date: modified 2021.

Author(s) Authors

Material Type Digital educational resource (module)

Media/Technical Format Web site

Short description of the

material

Material for students to independently acquire content related to learning

outcomes: define a logical expression for a given problem; analyze the

problem, define input and output values and identify steps to solve the

problem; apply simple data types and argue their selection, apply

different types of expressions, operations, relations and standard

functions for modeling a simple problem in the chosen programming

language. The material consists of text, images, videos and interactive

objects.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Everything :-)

Need for additional

analysis?

YES

Lectures

Materials are prepared for stand-alone/independent/self learning.

However, some of these materials could be used by the teachers during

the lectures. materials Materials are not separated in traditional lectures

and exercises. It does include relevant instructions which support the

exercises.

Exercises

Exercises are mostly interactive and provide automated feedback to

students. They include a variety of tasks from simple questions to

simulation. Complex tasks require input from teaching.

Tools
Custom developed web based system which is limited on predefined set

of modules for materials and exercised creation.

Evaluation
Materials include different assignments in both formative and summative

aspects.

Other important aspects

Final decision (what to use

for OOP4FUN)

YES, although this might be quite different from what we will be doing.

https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/e2fa002d-439a-484d-b2c6-6a3f4894a300/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/e2fa002d-439a-484d-b2c6-6a3f4894a300/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/e2fa002d-439a-484d-b2c6-6a3f4894a300/html/impressum.html

17

Teaching scenario, 1st grade high school - If I'm lucky enough to realize just some of

my ideas, it will be charity for all of humanity (Nikola Tesla), activity: Volunteer, mentor,

program (Edutorij)

Title of learning/teaching

material with the URL on

the repository

SP, 1. razred SŠ - Ako budem imao sreće da ostvarim samo neke od

svojih ideja, to će biti dobročinstvo za cijelo čovječanstvo Nikola Tesla,

aktivnost: Volontiraj, mentoriraj, programiraj

Direct URL to the learning

material

https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-

guest/79b15720-defe-4487-965b-9010d63f06fb/index.html

Date: added 2021.

Date: modified 2021.

Author(s) Authors

Material Type Teaching scenario

Media/Technical Format Web site

Short description of the

material

A teaching scenario that describes in a modern way the possible

realization of learning outcomes aligned with the national subject

curriculum.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Everything.

Need for additional

analysis?

YES

Lectures

There should be no traditional lectures. Teaching scenario focuses on

students' motivation through relevant questions and real life situations.

Presented elements combine learning outcomes and contemporary (hr.

suvremene) pedagogical approaches.

Exercises

Teaching scenarios focus on student's activity through project based

learning, problem based learning and other student-in-center

approaches. Exercises can be related to just one section of a teaching

session or to a longer term including several sessions, days or weeks...

Exercises emphasize collaboration between students.

Tools

Teaching scenarios do recommend the set of tools that could be used.

The tools are reviewed and evaluated and are appropriate for use in an

educational environment. All those tools are free or part of functionality

mentioned in teaching scenarios is free.

Evaluation

Evaluation is not strictly defined. Evaluation should be derived from other

pedagogical aspects which are presented in the scenario. For example,

if the teacher uses project based learning then evaluation should be

adequate for that approach.

Other important aspects

Final decision (what to use

for OOP4FUN)

YES, the results from PR2 will be mostly similar to a novel teaching

scenario for OOP4Fun.

https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/79b15720-defe-4487-965b-9010d63f06fb/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/79b15720-defe-4487-965b-9010d63f06fb/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/79b15720-defe-4487-965b-9010d63f06fb/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/79b15720-defe-4487-965b-9010d63f06fb/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/79b15720-defe-4487-965b-9010d63f06fb/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/79b15720-defe-4487-965b-9010d63f06fb/html/1135_impresum.html

18

Teaching scenario, 1st grade high school - Let's exchange experiences in the online

environment, activity - One task every week (Edutorij)

Title of learning/teaching

material with the URL on

the repository

SP, 1. razred SŠ, Razmijenimo iskustva u online okružju, aktivnost - Svaki

tjedan zadatak jedan

Direct URL to the learning

material

https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-

guest/a02d8fdc-dada-4eac-9dcb-cd9e86d080a5/index.html

Date: added 2021.

Date: modified 2021.

Author(s) Authors

Material Type Teaching scenario

Media/Technical Format Web site

Short description of the

material

A teaching scenario that describes in a modern way the possible

realization of learning outcomes aligned with the national subject

curriculum.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Everything.

Need for additional

analysis?

YES

Lectures Not related to OOP.

Exercises

Group work in a virtual classroom (Teams). For example, in our use-

case, students could be divided into groups that represent classes. One

student defines attributes for a specific class, another one a method,

another student another method etc., and finally they're joined into

groups by classes they defined.

Tools
Selection of IT tools used for collaborative learning (Teams, Wakelet)

and evaluation (Google Forms).

Evaluation No specific questions for evaluation.

Other important aspects

Final decision (what to use

for OOP4FUN)

Great example of using interesting innovative teaching methods.

https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/a02d8fdc-dada-4eac-9dcb-cd9e86d080a5/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/a02d8fdc-dada-4eac-9dcb-cd9e86d080a5/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/a02d8fdc-dada-4eac-9dcb-cd9e86d080a5/index.html
https://edutorij.e-skole.hr/share/proxy/alfresco-noauth/edutorij/api/proxy-guest/a02d8fdc-dada-4eac-9dcb-cd9e86d080a5/html/1994_impresum.html

19

Flow Charting App Inventor Tutorials (OER Commons)

Title of learning/teaching

material with the URL on

the repository

Flow Charting App Inventor Tutorials

Direct URL to the learning

material

https://www.teachengineering.org/activities/view/uno_appinventor_lesso

n01_activity1

Date added 2014.

License Educational Use Permitted

Author(s) Brian Sandall, Rich Powers

Material Type Activity/Lab

Media/Technical Format Text/HTML

Short description of the

material

Students design and create flow charts for the MIT App Inventor tutorials

in this computer science activity about program analysis. Students work

through tutorials, design and create flow charts about how the tutorials

function, and present their findings to the class. In their final assessment,

they create an additional flow chart for an advanced App Inventor

tutorial.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

This material introduces a software called "App Inventor" published by

MIT. This software enables its user to create actual simple Android

applications by only joining pieces of "coding puzzles". This software

should be analyzed, but the material itself is of no use to us.

Need for additional

analysis?

YES

Lectures

Short summary of MIT App Inventor tool with examples of designing

and creating flow charts. There are Learning objectives, Material List,

Prereq Knowledge, Introduction/Motivation, Procedure,

Vocabulary/Definitions, Assessment.

Exercises Creating simple apps for mobile devices without programming.

Tools App Inventor: https://appinventor.mit.edu/

Evaluation
Detailed description of Assessment: Pre-Activity Assessment, Activity

Embedded Assessment, Post-Activity Assessment.

Other important aspects

One good example is how they lay down all the components needed for

UI in a simple table form: "Component type / Palette group / What you’ll

name it / Purpose". That way, students can define the entire UI by only

reading the table.

Final decision (what to use

for OOP4FUN)

Great example of using App Inventor (OOP) tool and detailed description

of teaching methods.

Code.org (OER Commons)

Title of learning/teaching

material with the URL on

the repository

Code.org

https://www.oercommons.org/courses/flow-charting-app-inventor-tutorials
https://www.teachengineering.org/activities/view/uno_appinventor_lesson01_activity1
https://www.teachengineering.org/activities/view/uno_appinventor_lesson01_activity1
https://appinventor.mit.edu/
https://appinventor.mit.edu/
https://www.oercommons.org/courses/code-org

20

Direct URL to the learning

material

https://code.org/

Date added 2017.

License Creative Commons Attribution-NonCommercial-ShareAlike

Author(s) Code.org

Material Type Online course

Media/Technical Format Text/HTML

Short description of the

material

The course covers topics such as problem solving, programming,

physical computing, user-centered design, and data, artificial

intelligence, and machine learning, while inspiring students as they build

their own websites, apps, games, and physical computing devices.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

A lot of materials and courses are offered, some of which are specially

designed for high school students. The methods and approaches should

be further analyzed to see which ones could be useful (i.g. CSA

curriculum incorporates culturally responsive and equitable teaching

strategies designed to invite, engage, and empower a rich diversity of

students, https://code.org/educate/csa)

Need for additional

analysis?

YES

Lectures

Full course catalog (English only) for students 14-18+. CS Discoveries

and CS Principles. Both are designed to broaden participation in

computer science. Video Library - These videos can be used in any CS

course to support learning. https://studio.code.org/courses

Exercises

Various, from creating games to coding AI. Hour of Code - Hour of Code

tutorials (Minecraft, Frozen, Flappy bird, Star Wars etc.) If you don’t have

time for a full length course, try a one-hour tutorial designed for all ages

and 45 languages. 1/10 - 18/12 each year. Join. Teachers guides for

various lectures, e.g. Lesson 1: Coding a Simulation

Tools

Tools for middle and high school (English only): App Lab is a

programming environment where you can make simple apps. Game Lab

is a programming environment where you can make simple animations

and games with objects and characters that interact with each other. CS

Journeys - Bring CS to life and help students make real world

connections to what they're learning. Widgets - Students can explore

concepts from our CS Principles course hands-on using these tools.

Evaluation Dynamic evaluations to test knowledge while test-playing.

Other important aspects Game-based learning, great motivation. But not related to OOP.

Final decision (what to use

for OOP4FUN)

Great examples of using interesting innovative teaching methods for

video game development.

Climate Solutions Challenge (OER Commons)

Title of learning/teaching

material with the URL on

the repository

Climate Solutions Challenge

Direct URL to the learning

material

https://www.oercommons.org/courseware/lesson/75955/overview

https://code.org/
http://code.org/
https://code.org/educate/csa)
https://code.org/educate/csa)
https://studio.code.org/courses
https://studio.code.org/courses
https://hourofcode.com/hr#join
https://hourofcode.com/hr#join
https://studio.code.org/s/outbreak/lessons/1
https://www.oercommons.org/courseware/lesson/75955
https://www.oercommons.org/courseware/lesson/75955/overview

21

Date added 2020.

License Creative Commons Attribution

Author(s) Brian Henning

Material Type Activity/Lab, Lesson Plan

Media/Technical Format Downloadable docs

Short description of the

material

Project activity which focuses on students’ familiarity with action items to

reduce their carbon footprint.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Idea for project activity.

Need for additional

analysis?

YES

Lectures
There are no lectures defined. It contains a more workshop-oriented

approach.

Exercises
Exercises are defined in details with steps and approximate duration.

Materials look like a detailed written preparation for a teaching session.

Tools
There is a special tool related to climate changes which is incorporated

in the teaching/learning process.

Evaluation
Not defined.

Other important aspects
Maybe we can use the idea of a climate-challenged topic.

Final decision (what to use

for OOP4FUN)

YES, as we will also deliver something similar to a learning/teaching

scenario, maybe not in so much detail.

22

Five (5) materials were identified as potentially useful in terms of material structure or

application idea.

Alice Programming Language (MERLOT)

Title of learning/teaching

material with the URL on

the repository

Alice Programming Language

Direct URL to the learning

material

http://www.alice.org/

http://www.alice.org/resources/

Date: added 2005

Date: modified 2020

Author(s) Stage 3 Research Group, Carnegie Mellon University

Material Type Collection

Media/Technical Format Web site, applications Alice2 and Alice3

Short description of the

material

Alice is a 3d graphics programming environment intended to be a gentle

first introduction to students ranging from 6th grade to college…

Using programming concepts and structures, students build 3D virtual

worlds that are often compelling. In the Alice project, they acknowledge

that capturing someone's attention is a prerequisite to teaching them.

Even a student's first programs can contain storytelling and game

aspects, making the process of writing a program much more

compelling, especially for female students.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

Examples of resources: How to. Lessons, Exercises & Projects, Audio

Library, Curriculum, Textbooks. Very high quality materials. There is

probably also about o-o programming, so it should be reviewed in more

detail. When searched with the keyword "object", it gives out several

materials.

Lectures

All lectures related to programming in Alice applications (2 and 3).

Content: Lessons, Skills Included in this Lesson, Exercises and Projects.

Materials include ready to use presentation slides.

Lessons materials are traditional content delivery oriented.

Materials are linked with How Tos, Exercises and Projects.

Exercises

Exercises and Projects - Tutorials, Scene Building, Animation... all

related to Alice

Materials contain detailed instructions for facilitating lectures and

exercises step by step.

Tools
The tool is available for free and all materials are related to the use of

Alice tool.

Evaluation Mentioned, but not defined in details.

Other important aspects

There is a link to a google sheet containing a detailed curriculum on

teaching programming in Alice. Could be useful for OOP4Fun.

http://www.alice.org/resources/curriculum/building-an-alice-curriculum/

Google spreadsheet with the curriculum structure:

https://docs.google.com/spreadsheets/d/1Os-

28thAt29jfa2LttK9w5H4nWQ1p46P3ln5aW7Uvo8/edit#gid=0.

https://www.merlot.org/merlot/viewMaterial.htm?id=85229
http://www.alice.org/
http://www.alice.org/
http://www.alice.org/resources/curriculum/building-an-alice-curriculum/
http://www.alice.org/resources/curriculum/building-an-alice-curriculum/
http://www.alice.org/resources/curriculum/building-an-alice-curriculum/
https://docs.google.com/spreadsheets/d/1Os-28thAt29jfa2LttK9w5H4nWQ1p46P3ln5aW7Uvo8/edit#gid=0.
https://docs.google.com/spreadsheets/d/1Os-28thAt29jfa2LttK9w5H4nWQ1p46P3ln5aW7Uvo8/edit#gid=0.
https://docs.google.com/spreadsheets/d/1Os-28thAt29jfa2LttK9w5H4nWQ1p46P3ln5aW7Uvo8/edit#gid=0.
https://docs.google.com/spreadsheets/d/1Os-28thAt29jfa2LttK9w5H4nWQ1p46P3ln5aW7Uvo8/edit#gid=0.

23

Final decision (what to use

for OOP4FUN)

Curriculum builder could be useful. Structure of lessons as well.

Teach Yourself C++ in 21 Days (MERLOT)

Title of learning/teaching

material with the URL on

the repository

Teach Yourself C++ in 21 Days

Direct URL to the learning

material

https://www.angelfire.com/art2/ebooks/teachyourselfcplusplusin21days.p

df

Date: added 2004

Date: modified 2018

Author(s) Greg Wiegand Sams Publishing

Material Type Textual online course

Media/Technical Format PDF

Short description of the

material

Introductory C++ tutorial designed to give the user understanding of how

this language works.

What could be used from

the material that

contributes to PR2 goal:

create learning designs

with new teaching

approaches

The material is really large (772 pages), but mostly it deals with detailed

clarification of the characteristics of the C++ language. What could be

analyzed in more detail is the chapter on OOP (analysis and design) on

page 551. It explains the choices of development methodologies, ways

of analyzing problems and designing solutions in an OOP perspective.

Lectures Good source for teachers related to content and basics of OOP.

Exercises Yes, examples of exercises (programming code).

Tools No.

Evaluation Q&A, Quiz (textual questions)

Other important aspects -

Final decision (what to use

for OOP4FUN)

Valuable resource only if C++ will be used in OOP4Fun. Without

innovative teaching methods.

Data Discovery (MERLOT)

Title of learning/teaching

material with the URL on

the repository

Data Discovery

Direct URL to the learning

material

http://www.searchingspot.com/datadiscovery/

Date: added 2012

Date: modified 2019

Author(s) Mark Wenning

Material Type Lekcije

Media/Technical Format Website

https://www.merlot.org/merlot/viewMaterial.htm?id=80588
https://www.angelfire.com/art2/ebooks/teachyourselfcplusplusin21days.pdf
https://www.angelfire.com/art2/ebooks/teachyourselfcplusplusin21days.pdf
https://www.merlot.org/merlot/viewMaterial.htm?id=657598
http://www.searchingspot.com/datadiscovery/

24

Short description of the

material

The lessons are designed to engage students with real-world data

relevant to content taught in middle school and high school science

courses. The Python lessons guide students in computational thinking to

create simple programs to manipulate data. The lessons also provide

students (and teachers) with instructions and guidance in the use of

these technologies. Worksheets and supporting files are linked to from

links at the top of each lesson webpage and from the downloads page.

What could be used from

the material that contributes

to PR2 goal: create learning

designs with new teaching

approaches

The lessons are well designed, but they won't be very helpful for

creating materials related to OOP and computer games. Inside the

repository there is a link to additional materials on the page:

https://learn.iste.org/d2l/lor/search/search_results.d2l?ou=6606&lrepos=

1006 . This is the Exploring Computational Thinking repository, where

there are ready-made Python tasks grouped according to the area or

age for which they are intended.

Lectures

Lectures have an interdisciplinary approach combining informatics and

other school subjects such as physics, chemists and other.

Cons: Lectures focus on school knowledge while neglecting real life

situations and motivation aspects.

Exercises

Exercises are based on worksheets for students (often to work in pairs)

with clear structure, they include complex assignments which are

divided into subtasks.

Cons: Negative is that worksheets do not include relevant context for

the assignments nor do they support complex learning approaches such

as problem based learning, inquiry based learning and similar.

Tools
Assignments often use spreadsheets and python. Instructions on

required tools are given.

Evaluation
Although concrete examples for grading are not presented,

spreadsheets can be easily adopted for evaluation purposes.

Other important aspects

For Croatian teachers these concepts should be well known. However,

the context should be added to the materials. On the other hand these

assignments should be abstracted so the student reasons the tasks to

be performed and solutions on his own.

Final decision (what to use

for OOP4FUN)

The materials if improved as explained in 'other important aspects' could

be of interest for us.

Lightbot Hour of Code (MERLOT)

Title of learning/teaching

material with the URL on

the repository

Lightbot Hour of Code

Direct URL to the learning

material

https://lightbot.com/hour-of-code.html

Date: added 2016

Date: modified 2018

Author(s) Danny Yaroslavski

Material Type e-course

Media/Technical Format Game

Short description of the

material

It is a "game" or "puzzle" in which the user programs a robot using a

visual, token-based programming language (icons).

https://learn.iste.org/d2l/lor/search/search_results.d2l?ou=6606&lrepos=1006
https://learn.iste.org/d2l/lor/search/search_results.d2l?ou=6606&lrepos=1006
https://www.merlot.org/merlot/viewMaterial.htm?id=1173844
https://lightbot.com/hour-of-code.html

25

What could be used from

the material that contributes

to PR2 goal: create learning

designs with new teaching

approaches

It is not a learning material, but a puzzle game based on programming,

the purpose of which is to convey the logic of programming to students

while playing. Students learn the principles of programming (sequence,

overloading, loops...). It is an innovative approach to teaching, so it

would be useful to review the materials in more detail.

Lectures
Just info about principles of the game at the page How does Lightbot

teach programming?

Exercises None.

Tools Lightbot for Win/Mac/Android/Ios. Paid application (free for MacOS).

Evaluation None.

Other important aspects

The tool has been around for more than decade (written originally in

flesh) and it has always been an interesting (almost brilliant) idea to

teach basic concepts of programming. It would be great if we could

create a game that would teach programming as well.

Final decision (what to use

for OOP4FUN)

Great idea to build an application similar to this one using Greenfoot.

Simulating the Bug (OER Commons)

Title of learning/teaching

material with the URL on

the repository

Simulating the Bug

Direct URL to the learning

material

https://www.oercommons.org/courses/simulating-the-bug/view

Date: added 18.9.2014

License Educational Use Permitted

Author(s) Douglas Bertelsen

Material Type Activity/Lab

Media/Technical Format Text/HTML

Short description of the

material

Students modify a provided App Inventor code to design their own

diseases. This serves as the evolution step in the software/systems

design process.

What could be used from

the material that contributes

to PR2 goal: create learning

designs with new teaching

approaches

It has a contemporary idea of disease transmission and additional

resources, including application with code.

Lectures
There are no lectures defined. It contains practical assignments and apk

files.

Exercises

Materials provide basic input for the use of the tool (App Inventor). They

focus on practical and interesting concepts of disease transmission and

make an app for tracking.

Tools https://appinventor.mit.edu/

Evaluation Not available. It's meant to be used as a live exercise with a teacher.

https://lightbot.com/hoclearn.html
https://lightbot.com/hoclearn.html
https://lightbot.com/hoclearn.html
https://www.oercommons.org/courses/simulating-the-bug
https://www.oercommons.org/courses/simulating-the-bug
https://www.oercommons.org/courses/simulating-the-bug/view
https://appinventor.mit.edu/

26

Other important aspects

If App Inventor (MIT) would be used, then we could do the same thing

this material did: in the beginning of the materials, place down all the

blocks that are to be used.

Final decision (what to use

for OOP4FUN)

Look at the App inventor tool.

3.4. Conclusions on the teaching/learning materials

Preliminary analysis of the MERLOT database showed that not many teaching/learning

materials are available in the database MERLOT related to programming and specifically to

object-oriented programming. The next step of the team was to investigate 44

teaching/learning materials found in the OER Commons search results and in the Croatian

national repository of open educational resources Edutorij. The criteria for searching OER

Commons (and MERLOT) were the following: keywords “programming” or “game-based

programming”, filtered by primary user (teacher), education level (high school), subject area

(computer science) and material type (activity/lab, homework/assignment, interactive, lesson

plan, module, teaching/learning strategy).

After identifying 19 educational materials from aforementioned repositories relevant for

PR2 goal (create learning designs with new teaching approaches), additional deeper analysis

of materials has been performed by two team members: one with the main background in

programming and the other with the main background in didactics and/or e-learning methods.

The focus of the deeper analysis was on the a) topic of object-oriented programming, and b)

innovative pedagogical practices, methods and tools such as problem based learning, inquiry-

based learning, game-based learning, flipped classroom, project based learning, peer

learning, etc… Materials were explored from the perspective of the lectures, exercises, tools

and evaluation.

Lessons learned from the second round analysis of relevant educational resources,

that are worth implementing in the OOP4Fun context, are the following:

• There are not many open educational resources related to object-oriented

programming (OOP). Those that are published refer to specific programming

platforms, e.g. Alice, VB.Net, Greenfoot, and introduce some OOP concepts. Examples

from these platforms could be used as an idea for learning designs in OOP4Fun PR2.

• Some educational materials introduce a specific OOP application, e.g. MIT App

Inventor tool, that could be used for various topics by demonstrating OOP concepts.

• Several materials provide examples of teaching scenarios with inclusion of

contemporary pedagogical methods. Those materials could be used as guidelines in

creating learning designs for OOP4Fun.

• There are a few materials with presentations of a game or game-based learning that

could be used in a similar way in OOP4Fun: e.g. creating a game and introducing the

OOP concepts in the process of game development.

• Additional review of the teaching resources available in Greenfoot.org is needed

(accessible after registration to the teacher’s community) since the platform is

proposed in the OOP4Fun project application.

• Most of the analyzed materials do not provide a holistic approach but usually

place more focus on programming (how to code) or pedagogical aspects (novel ideas,

contemporary pedagogical approaches, context relevant to real life situations, etc.).

Our recommendation is to combine positive aspects from the analyzed materials into

integrated solutions which incorporate both aspects.

https://www.greenfoot.org/door

27

• Materials mostly do not cover evaluation aspects or focus on traditional approaches

(quizzes and similar). This is the field which will require a novel approach.

• Most materials do not make strict separation between exercises and lectures

(instructions), which is a positive aspect and should be followed in the OOP4Fun. Most

places focus on students’ activity, while some do maintain a rather traditional

approach such as exercises. There are several examples which focus on project

activities or similar aspects which provide a more novel approach to learning.

• Many analyzed sources provide relevant materials for teachers - how to code, but do

not provide contextual value to the presented exercises (like real life situations,

motivation, application in different scenarios, etc.)

• Most of the analyzed materials are based on clear tasks for students in which the

problem is already identified. This is not in line with real life situations and the nature

of programming where one usually needs to identify what is the problem. Our

suggestion is to place emphasis on problem-based learning and project based

learning to support students’ deeper learning.

We would like to give the credits and thanks to our partners from UNIZA and UNIBG who

joined the efforts of the FOI team and reviewed all the materials about programming extracted

from the educational repositories.

Also the university of Zilina, as participants in the National program IT Academy in

Slovakia, have created the materials for OOP focused on students by means of utilizing the

possibilities of the Greenfoot tool. Given the importance of these materials and the connected

workshops that were executed, the analysis including the feedback from students and

teachers who have already used the materials in their practice is given in the separate chapter

in this document. The final conclusion supported with the feedback from teachers justifies that

the Greenfoot as a tool should be used in OOP4fun project application.

28

4. Literature Review

acizmesi@foi.hr, dperas@foi.hr, zstapic@foi.hr

4.1. Introduction

In the 21st century, programming has emerged as a crucial skill, akin to fundamental abilities

like reading and writing. Despite its paramount importance in contemporary workplaces, the

methods employed to teach programming are often outdated, not aligning with the needs of

digital-native learners. As a consequence, the demand for programming skills has surged,

making it an integral aspect of formal education. However, mastering programming, especially

for beginners, remains a formidable challenge, resulting in high dropout rates at universities

and diminished student motivation. Recognized as one of the most difficult subjects,

programming poses challenges for both learners and educators.

Research conducted over the past decades sheds light on the multifaceted difficulties

faced by students and teachers in programming education. Notably, the diverse backgrounds

of both educators and learners significantly influence their grasp of programming concepts.

Beyond syntax and semantics, programming demands a comprehensive skill set. Various

factors contribute to student struggles, including inflexible learning approaches, language

barriers, inadequate math skills, lack of learning strategies, and educators' insufficient subject

knowledge.

Early encounters with abstract programming concepts often prove daunting for many

students, particularly in the context of traditional teaching methods that may disengage today's

Generation Z. Addressing these challenges necessitates an exploration of the backgrounds

and competencies of teachers and students as learners. This section delves into this

exploration, presenting findings from a tertiary study conducted to enhance the effectiveness

of programming courses. The subsequent sections outline the research problem, questions,

protocol for the Systematic Literature Review (SLR), its implementation, and the results,

followed by a discussion and concluding with key insights1.

4.2. Conducting the analysis

Literature review was conducted at the end of August 2022 and included two relevant scientific

bases for Information Science education research: Scopus and Web of Science (WoS).

Search Query in Scopus was following: (TITLE-ABS-KEY (programming) AND

TITLE-ABS-KEY (teach*) AND (TITLE-ABS-KEY (method) OR TITLE-ABS-KEY (

approach))) and initial results revealed 11 020 relevant documents. After that, the filter

option was applied to include only review articles Scopus was used and resulted in 179

papers. Also, we have limited the search to relevant areas and included only documents from

Social Science, Computer Science and Engineering and output of this was 121 documents in

total. Next step was to read the title and the abstract of each paper and determine whether it

is suitable for the purposes of project task analysis. By applying inclusion and exclusion criteria

(Table 1), 21 papers were relevant, but 17 of them were available to download. After reading

the papers, two independent researchers excluded an additional 10 papers which resulted in

a total of 7 papers from Scopus suitable for literature review.

1 The research presented was published as a: Čižmešija, A., Peras, D., Stapić, Z., “Key competences

and skills for teaching and learning programming: a tertiary study”, ICERI2023, Seville, Spain, 2023

29

Second online scientific database that was searched was Web of Science (WoS).

Query in WoS was following: Programming (Title) and teach* (Title). Other key words were

excluded to optimize the search to the possibilities of researchers involved in the process.

Initial search resulted with 9,469 results from Web of Science Core Collection. After that filter

option/limitation to only review arciaels was applied resulting in 106 documents. Another step

was taken – we included only relevant areas related to Education and Programming which

gave us 51 papers that were carefully examined by reading their title and abstract. In the end,

5 papers from Scopus were suitable for literature review and both independent researchers

decided to keep them.

To get more possible relevant papers, additional search of Google Scholar was

performed and resulted with 3 papers that were included in literature review. Finally, 15

research papers in total were the starting point for detailed literature review.

Table 1. Criteria used to include papers in literature review

Inclusion criteria Exclusion criteria

Paper potentially deals with skills and

competences of teachers or previous

background knowledge of students related to

programming

Document in the form of magazine article

Paper describes novel and innovative teaching

methods for programming (+tools) and gives

guidelines for future investigation of

programming in education

Paper is not focused on programming in high
school or higher education context

 Paper is literature review or systematic
literature review

Paper is thematizing programming in work-
context

4.3. Literature review results

In the following section, selected papers are analyzed and relevant information is presented

in line with the approaches used in other analysis for the purposes of PR2 so the final

conclusions and outputs could be made in a uniform manner.

As it is shown in figure 5, 4 of the 15 papers included in the literature review were

published 2017,. following by 2021. In which 3 papers were presented. By the distribution of

relevant papers from year to year, we can see that topics related to exploring programming

from various standpoints are novel and relevant, and therefore a very useful research and

scientific area.

30

Figure 5. Number of papers in literature review by years

Table 2. shows an overview of the relevant papers covered by the literature review, which

includes the names of authors, year, title, method used and the number of included works or

included respondents. It is evident from the Table and paper titles that in our review the

dominantly included literature reviews are related to programming in education in general, and

only one paper deals with more detailed concepts relevant to object-oriented

programming(OOP). Due to the lack of systematic works that will focus on OOP, the literature

review included papers that will cover a broader research topic in order to answer these sub-

research questions of our review:

● Which skills and competences teachers need to successfully teach programming?

● Which skills or previous background knowledge should students have to learn

programming efficiently?

● Which innovative methods teachers use to successfully teach programming?

● Which tools can be used to successfully teach students programming?

● What are the main guidelines for future investigation of programming in education?

Table 2. List of paper included in literature review for project purposes

Authors and
year

Title

Methodology

Number of
analyzed

papers/subjec
ts

Level of
education

(Medeiros,

Ramalho, &

Falcao, 2019)

A Systematic Literature

Review on Teaching and

Learning Introductory

Programming in Higher

Education

 Systematic

Literature review 89 papers

Higher

education

(Jawad & Tout,

2021)

Gamifying Computer

Science Education for Z

Generation

Pre-test-post-test

experimental

methodology

65 high school

students

High school

education

(Perugini, 2019) Emerging languages:

An alternative approach

to Case study

6 high school

students

High school

education

31

teaching programming

languages

(Jenki &

Ademoye, 2011)

Can Individual code

reviews improve solo

programming on an

introductory course?

Literature review

Experiment (pilot and

follow up studies)

28 papers, 34

students

Higher

education

(Yulianto,

Prabowo, &

Meyliana, 2017)

Effective Digital Contents

for Computer

Programming Learning: A

Systematic

Literature Review

Systematic literature

review (2006 - 2017) 25 papers Not specified

(Qian &

Lehman, 2017)

Students’ Misconceptions

and Other Difficulties

in Introductory

Programming: A

Literature Review Literature review 100 papers

High school

education

(Hundhausen,

Agrawal, &

Agarwal, 2013)

Talking about Code:

Integrating Pedagogical

Code Reviews

into Early Computing

Courses

Mixed-method

empirical study 21 students

Higher

education

(João Henrique

Berssanette &

de Francisco,

2021a)

Active Learning in the

Context of the

Teaching/Learning of

Computer Programming:

A Systematic Review

Systematic literature

review

(2014 - 2019) 38 studies

Higher

education

(Joao Henrique

Berssanette &

de Francisco,

2021)

Cognitive Load Theory in

the Context of Teaching

and Learning Computer

Programming: A

Systematic Literature

Review

Systematic literature

review (2010 - 2020) 33 papers

Higher

education

(J. P. da Silva &

Silveira, 2020)

A Systematic Review on

Open Educational Games

for

Programming Learning

and Teaching

Systematic Literature

survey 12 studies Not specified

(Abbasi, Kazi, &

Khowaja, 2018)

A systematic Review of

Learning Object Oriented

Programming through

Serious Games and

Programming

Approaches

Systematic literature

review 15 studies

Higher

education

32

(De Assis Mota,

Mota, &

Morelato, 2004)

Teaching Power

Engineering Basics Using

Advanced

Web Technologies and

Problem-Based Learning

Environment

Case study + survey

(student's feedback) n/a

Higher

education

(Luxton-Reilly

et al., 2018)

Introductory

Programming: A

Systematic Literature

Review

Systematic literature

review 1666 papers

Higher

education

(Hendrik &

Hamzah, 2020)

Flipped Classroom in

Programming Course: A

Systematic Literature

Review

Systematic literature

review 32 papers

Higher

education

(L. Silva,

Mendes, &

Gomes, 2020)

Computer-supported

Collaborative Learning in

Programming Education:

A Systematic Literature

Review

Systematic literature

review 27 papers Not specified

The papers included in the literature review covered a wide range of topics (for example:

employing flipped classrooms in programming courses (Hendrik & Hamzah, 2020), open

educational games for programming learning and teaching (J. P. da Silva & Silveira, 2020)),

which is useful for understanding the problem area related to programming from multiple

perspectives. This ensured us a good starting position because we were actually doing a meta

analysis of existing knowledge and how to apply it to solve our identified problems and design

methods related to teaching object-oriented programming in a fun way.

Most of the authors (9/15, 60%) used Systematic literature review as a method which

ensured us a good starting position because we were actually doing a meta analysis of existing

knowledge and how to apply it to solve our own problems and design methods that will teach

object-oriented programming in a fun way. 2 of the papers used literature review and the rest

of the papers used experiments or case study approaches (or its’ combination) in conducting

research. The most detail systematic literature review was carried out by (Luxton-Reilly et al.,

2018) in which 1666 papers classified in 4 groups: (1) Student - student learning,

underrepresented groups, student attitudes, student behavior, student engagement, student

ability, the student experience, code reading, tracing, writing, and debugging, (2) Teaching -

teaching tools, pedagogical approaches, theories of learning, infrastructure, (3) Curriculum -

competencies, programming languages, paradigms, (4) Assessment- assessment tools,

approaches to assessment, feedback on assessment, academic integrity.

Regarding the level of education in papers (Table 2) we recognized two as important: higher

education and high school education. Most of the studies are dominantly conducted at

university level (60% of them), but some of those papers also included findings from high

school or secondary school education (for example:(Hendrik & Hamzah, 2020),(João

Henrique Berssanette & de Francisco, 2021a)). 3 of the analyzed papers ((Qian & Lehman,

33

2017),(Jenki & Ademoye, 2011),(Medeiros, Ramalho, & Falcao, 2019)) are focused on high

scholls level, and the rest 3 do not explicitly state the level of education of students. Although

authors in their work do not specify the education level on which research was conducted,

they in the conclusion pointed out the lack of the scientific papers dealing with open

educational games to learn programming in higher education (J. P. da Silva & Silveira,

2020). Therefore, research and practical opportunities still exist to apply different teaching

methods that will be focused more on using games in teaching programming, especially OOP.

4.3.1. Summary of teacher skills and competences

Since the teaching of programming is done in the line with the use of various communication

and collaboration tools dominantly in computer-mediated learning context, one pedagogical

methodology that is indicated as appropriate is constructivism. In line with the fundamental

concepts of constructivism, the role of the teacher in the process of programming knowledge

delivery should differ from the classical tutor role and direct teaching. Teachers should

motivate and guide students to acquire knowledge the related knowledge mostly

independently through oriented searching (De Assis Mota, Mota, & Morelato, 2004).

Furthermore, use of appropriate tools, interactive applications that are embedded in the

learning environment in class or in some percentage online are key supporting factors in the

teaching process and later, successful students' learning of programming concepts.

Similar approach that requires a more effective role of the teacher and her/his engagement is

active teaching and learning. Findings of recent literature synthesis indicates that main

contributions of active approach derive from teachers' role in order to motivate students and

stimulate their interest for the programming course, increasing their satisfaction,

improving learning experience and consequently, leading to better performance and outcomes

(Berssanette & de Francisco, 2021) and keeping them engaged in the class (Medeiros,

Ramalho, & Falcao, 2019).

The base of every successful knowledge transfer from teacher to student(s) is teacher's

knowledge of the subject matter, in this case, programming concepts (Qian & Lehman,

2017) and use creativity to present them on the level students will comprehend. Creativity is

especially relevant for teaching generation Z by using gamification (Jawad & Tout, 2021)

regarding their high expectations as well as teachers' good problem solving skills (Medeiros

et al., 2019). Being able to clearly convey the tasks and expectations that students should

fulfill in the class is often mentioned competence in our literature review. Teachers should

provide well specified instructions for various individual or group activities like project and

presentations (Perugini, 2019) using appropriate analogies, models, and metaphors (Qian &

Lehman, 2017). Also, teachers should give tasks of appropriate complexity (Qian &

Lehman, 2017). In programming, teachers should be able to train and guide students before,

during and after the code inspection. Some suggested activities include encouraging regular

discussions of best coding practices and solutions to issues and keeping students on track on

specific tasks that are expected from them to accomplish (Hundhausen, Agrawal, & Agarwal,

2013).

Another important guideline that should be considered by investigated literature is teacher's

flexibility and individual approach to student or group if needed (Medeiros et al., 2019).

34

This especially applies to balancing the classroom timeline (for example expanding if

needed) and putting focus both on gifted and more skillful students, as well as providing

additional help and guidance for weak students (Berssanette & de Francisco, 2021).

Specifically in active learning it is important to enable the greater flexibility and

customizability of the teaching/learning process, let students learn at their own pace and

focus on activities that will increase students’ confidence (Berssanette & de Francisco, 2021).

Regarding skills and competences teachers need to teach programing successfully using

appropriate methods, importance of communication skills is well-elaborated in analyze

literature reviews (Medeiros et al., 2019) as well as providing timely feedback to students

(Medeiros et al., 2019), (Perugini, 2019).

Programming skills are often referred as hard skills, but besides them, teachers should devote

the same amount of effort for class activities focused on developing student's soft skills (for

example: teamwork, motivation, problem solving, critical thinking) and providing environment

for efficient teamwork and collaboration (Berssanette & de Francisco, 2021).

4.3.2. Student's previous skills and background knowledge

In literature synthesis, authors (Medeiros, Ramalho, & Falcao, 2019) group skills students

need in two main categories: (1) general skills and (2) Programming related skills. In this

paper, we also followed this approach. Summary of desirable previous background skills from

our literature analysis is shown in Table 3.

Apart from general skills that closely refer to soft skills and programming related skills/previous

knowledge, literature analysis of selected papers indicated the importance of student's

motivation high, and real engagement to progress in learning how to code an well as interest

in programming (João Henrique Berssanette & de Francisco, 2021),(Jawad & Tout, 2021), (da

Silva & Silveira, 2020). As other desirable skills, authors mentioned student’s ability of self-

regulation, restraint ability, independence, and responsibility in learning (Hendrik & Hamzah,

2020).

Table 3. Categorization and summary of student's previous skills and background

knowledge

General skills ● Critical thinking and discussion skills, creativity, time management,

english skills (Medeiros et al., 2019)

● Soft skills: communication, collaboration, team work, self-efficacy,

peer learning, critical review (Hundhausen, Agrawal, & Agarwal,

2013)

35

Programming

related skills

● Problem solving, abstraction ability, mathematical skills (Medeiros et

al., 2019)

● Algorithm skills, mathematics skills, problem solving, logical thinking

(Yulianto, Prabowo, & Meyliana, 2017)

● Syntactic knowledge, conceptual knowledge, strategic knowledge,

natural language, math knowledge, patterns and strategies (Qian &

Lehman, 2017)

● Development of higher cognitive skills (João Henrique Berssanette &

de Francisco, 2021), (Joao Henrique Berssanette & de Francisco,

2021)

● High levels of abstraction involved in programming logic (da Silva &

Silveira, 2020)

4.3.3. Summary of other important aspects and guidelines for future investigation

In general, it is crucial to connect and encourage information exchange between school and

university teachers, with the involvement of policymakers who define curricula related to

programming skills at all educational levels. This unified approach would make high school

students more ready and skillful for entry level at university programmes containing

programming courses (Medeiros, Ramalho, & Falcao, 2019). Some initiatives have been

already made, but there is a lot of open space for example to practice the flipped classroom

for programming in the K-12 education level (Hendrik & Hamzah, 2020).

Developing and enhancing teachers’ pedagogical content knowledge and ability to apply

effective instructional methods and tools to help students to overcome problems with

programming concepts in OOP (for example their misconceptions about content) is crucial

for the success of teaching introductory programming and better students performance (Qian

& Lehman, 2017).

For learning and teaching of OOP concepts, learning by creating the games showed the

significant effects for improving students problem solving skills and engaging them in a fun

and entertaining environment (Abbasi, Kazi, & Khowaja, 2018). Students' intrinsic and

extrinsic motivation for computer science subjects can be improved by implementing class

activities and gaming code examples. If students are able to apply learned programming

concepts in creative ways and their code is functional (runs without errors), teachers should

try to employ learning tools that have social buttons (for example: like, share) in order to

provide them a base for sharing their knowledge with peers. For generation Z this could be an

effective approach because such tools have similar functionalities of commonly used social

platforms like Instagram, TikTok or Facebook. The most effective elements in gamified

learning are points, badges, and a leader board (Jawad & Tout, 2021).

Regarding suitable resources (digital contents) for teaching and learning programming,

authors (Yulianto, Prabowo, & Meyliana, 2017) suggest to use e-books and videos for

improving knowledge and other forms like animation/simulation and games are useful

for boosting students’ motivation for programming and course related activities .

36

 Other guidelines suggest that the students have to be masters of their own learning time and

do it at their own pace through asynchronous learning segments(De Assis Mota, Mota, &

Morelato, 2004). Learning in an online environment which was well established practice during

the COVID-19 pandemic could be effectively incorporated to the course contents, increasing

the appeal for learning. This way of teaching can replace traditional in situ lectures and

optimize students' time for learning programming. Another note goes in the direction of the

teachers/universities that have to encourage students in making connections with the real life

sector (for example provide an opportunity for professional internship in industry).

4.3.4. Innovative forms of instruction/knowledge transfer

Papers dealing with the forms of knowledge transfer were grouped into course orientation and

teaching delivery. The course orientation category includes papers that describe the overall

approach to the structure of the course. The teaching delivery category includes papers that

describe techniques and methods that could enhance learning.

Several variations of course designs were suggested, such as blended learning (Henrique

Berssanette & Carlos de Francisco, 2021; Yulianto et al., 2017), learning-by-doing (Medeiros

et al., 2019), problem solving (Hendrik & Hamzah, 2021), collaborative problem solving

(Luxton-Reilly et al., 2018), teamwork (Medeiros et al., 2019), problem-based learning

(Hendrik & Hamzah, 2021; Henrique Berssanette & Carlos de Francisco, 2021; Mota et al.,

2004), active learning (Henrique Berssanette & Carlos de Francisco, 2021; Medeiros et al.,

2019; Perugini, 2019), lab-based learning (Medeiros et al., 2019), extreme apprenticeship

(Medeiros et al., 2019), inverted and flipped classrooms (Henrique Berssanette & Carlos de

Francisco, 2021; Luxton-Reilly et al., 2018; Yulianto et al., 2017).

Teachers have explored a variety of contexts that connect introductory programming with real-

world applications. It has been argued that the relevance and real-world application of

computational processes are demonstrated effectively by tangible computing devices such as

a Sifteo Cube, LEGO MindStorms, iRobot Creates, CSbots, and the Raspberry Pi (Luxton-

Reilly et al., 2018). Although such innovative contexts are seldom evaluated, there is some

evidence that students enjoy using the devices, and this enjoyment may translate to greater

participation and completion rates. Block-based programming environments for beginners

were suggested to help develop computational thinking, since they are not tied to a

professional programming language as taught in university courses (Medeiros et al., 2019).

Type of games commonly developed were Mini Games and Simulations, Adventures, RPG,

Exploration, Puzzles, Role playing games (RPG), and Robot Simulations (Luxton-Reilly et al.,

2018).

Various methods were used to deliver the content (Henrique Berssanette & Carlos de

Francisco, 2021; Jawad & Tout, 2021; Jenkins & Ademoye, 2012; Luxton-Reilly et al., 2018;

Medeiros et al., 2019; Silva et al., 2020): live coding, games, game-themed assignments and

gamification; peer instruction, pair programming, peer review, electronic voting, pair

programming, and group activities were used to deliver the content.

37

4.3.5. Methods and approaches

Lectures

The traditional teaching based on lectures has been questioned a lot. Part of the concern with

the efficiency of traditional teaching stems from the teaching format that can often place

students in a passive role so that they receive the knowledge transferred by the teacher from

isolated facts, out of context, in addition to this knowledge being abstract with the significant

possibility of being forgotten later. Flipped classroom teaching approach was suggested as

most suitable for active learning/teaching because of (Henrique Berssanette & Carlos de

Francisco, 2021): (i) increased learning performance; (ii) positive attitudes; (iii) increased

engagement; (iv) more discussions; (v) enforced cooperative learning; and (vi) better learning

habits.

Some of the basic instructional approaches and strategies suggested for lectures were to

teach programming strategies and patterns explicitly to students, to use good program

examples, and to develop a concept inventory (CI) by using emerging languages (Qian &

Lehman, 2017).

One of the approaches proposed for coping with difficulties of understanding and mapping the

basic concepts of OOP was Game-Based Learning (GBL) approach (Abbasi et al., 2017)

(GBL). GBL provides close to real life scenarios in the engaging way. The investigated studies

applied different programming approaches for OOP learning. Game first programming

approach has been observed in most of the studies, followed by object, GUI, code and concept

first approach.

Seminars/Laboratory exercises

Seminars/exercises should generally be designed to enable students to participate in the

exercises (Jawad & Tout, 2021). Their inclusion in the creation of language synopses, the

development of programming exercises, the creation of outline-style webpages should be

encouraged (Perugini, 2019). The in-class activities suggested for the laboratory exercises

are (Hendrik & Hamzah, 2021): hands-on-experience, problem solving, short briefings,

quizzes, assignments with teacher assistance, and student’s presentations of the emerging

languages. Student collaboration can also be encouraged in form of pair-programming, and

programming in groups with more than two students (Silva et al., 2020) .

Practical assignments

Students were mostly assigned graded homework, involving both conceptual and

programming exercises, to evaluate their understanding of the concepts. Their final projects

involved a software system, a formal paper discussing it, and an in-class presentation

(Perugini, 2019).

Assessment

Various metrics were used to estimate the difficulty of code-writing tasks and to assess specific

learning outcomes.

38

A number of tools have focused on giving students feedback on their programming process

(Luxton-Reilly et al., 2018). Bluefix can be integrated into the BlueJ IDE, providing

programming students with crowd-sourced error diagnosis and repair feedback. NoobLab is

an online learning environment that attempts to provide an analogue of the traditional in-lab

tutor-student dynamic that is specific to programming. PRAISE facilitates anonymous review

and delivers prompt feedback from multiple sources including peer-generated feedback.

For assessing the learning outcomes, analysis of written exam papers, questionnaires, single-

concept questions, multiple-choice exam questions, individual feedback, and self-assessment

tools were used (Luxton-Reilly et al., 2018). (Online) questionnaires were mostly used for

assessing enjoyment, usefulness, interest, engagement and simplification of concepts (Jawad

& Tout, 2021; Jenkins & Ademoye, 2012). Step-by-step evaluation was also proposed

(Hundhausen et al., 2013), consisting of pre-survey of attitudes, pre-test of course knowledge,

post-survey of attitudes, PCR Exit Survey, and Post-test of programming knowledge (as part

of final exam). Effective and cognitive level outcomes (apply, evaluate, synthesis, active

participation, and willingness to learn) were measured in one paper (Abbasi et al., 2017). Final

examination grading and passing ratio of the students were commonly used as evaluation

metrics.

4.3.6. Tools

A variety of tools have been developed to support teaching and learning programming. The

majority of papers present new tools, including environments and editors. Environments such

as the Penumbra Eclipse plug-in, BlueJ, DrJava Eclipse Plug-in, and COALA seek to provide

suitable pedagogic environments while leveraging the power of industry-standard IDEs. Calico

can support a variety of languages, pedagogical contexts, and physical devices, while Jeroo

can provide a smoother transition to Java or C++. Here are the environments and editors that

have been reported, categorized by the languages they support (Luxton-Reilly et al., 2018):

● C: LearnCS!

● C++: CLIP

● Habanero Java: DrHJ

● Haskell: Helium

● Java: ALE, Java-based platform for developing 2-D Android games, BlueJ, COALA,

CodeMage, Decaf, DrJava Eclipse Plug-in, ELP, Gild, JGrasp, Jigsaw, Penumbra

● Jeroo: Jeroo

● Karel++: objectKarel

● Pascal: VIPER

● Python: CodeSkulptor, PyBlocks, Pythy

● Multiple Languages: AgentSheets, Calico, CodeLab, CloudCoder

While most authors propose using one programming language in one course, some authors

encourage the use of different emerging languages to achieve different purposes (Perugini,

2019): JavaScript for first-class and high-order functions, Python for closures and lazy

evaluation (e.g., list/generator comprehensions), Perl for scoping options, Ruby for first-class

continuations, Haskell for pattern matching, type systems, and lazy evaluation; and Racket for

fundamental functional programming.

39

Different types of tools have been designed to help students learn programming in general:

assessment systems, compiler assistants, program submission systems (providing minimal

feedback), drill-and-practice systems, and intelligent tutoring systems (Luxton-Reilly et al.,

2018).

Debugging tools (Decaf, Whyline), design tools (UML diagrams, flowcharts, pseudocode),

visualization tools (Online Python Tutor, Greenfoot, UUhistle), graphical programming, and

automated assessment systems (Luxton-Reilly et al., 2018; Qian & Lehman, 2017) have also

been successfully utilized to help students learn programming.

Some of the popular serious games used for teaching OOP were (Abbasi et al., 2017):

MUPPETS, WormChase, Breakout, Othello, Alice, GAPS, Simoo, and Sifteo cubes. In

majority of studies game genre was not specified.

Tools that were used for making serious games are (Abbasi et al., 2017): GameMaker,

MinimUML, Amiga, Ztech design, and Unity.3D

4.4. Conclusions on the literature review

Blended learning and flipped classrooms were recognized as the most dominant

designs used to improve students’ programming skill and motivation. The importance

of fostering learning of core principles of programming by focusing on student learning rather

than instructor teaching was emphasized. Various authors emphasized the importance of

establishing the context and framework that will enable students to deconstruct and

reason about, as well as the importance of providing ample scope for individual critical

thought, design, and creativity. The integration of multiple languages was also encouraged.

Furthermore, flipped classroom teaching approach was suggested as most suitable for

active learning/teaching.

Games were widely used to motivate students to learn programming. Students liked

the opportunity to be creative when supported by an appropriate framework. Evidence

in the literature suggests that students enjoy the social interaction resulting from collaborative

activities, and that working collaboratively has several benefits such as improved engagement,

confidence, retention, and performance. Three different ways of learning through games

were proposed: learning by playing games, learning by creating games and learning by using

game related tools.

Various metrics were used to estimate the difficulty of code-writing tasks and to assess specific

learning outcomes. Final examination grading and passing ratio of the students were

commonly used as evaluation metrics.

A variety of tools have been developed to support teaching and learning programming. The

majority of papers present new tools, including environments and editors. Different types of

tools have been designed to help students learn programming in general: assessment

systems, compiler assistants, program submission systems, drill-and-practice systems, and

intelligent tutoring system. Debugging tools, design tools, visualization tools, graphical

programming, and automated assessment systems have also been successfully utilized to

help students learn programming.

40

5. Experiences from Students

zstapic@foi.hr, mmijac@foi.hr, mmatijevi@foi.hr, lmasnec@foi.hr

5.1. Introduction

In order to obtain information on good and bad experiences on teaching practices,

approaches, and tools in programming and object-oriented programming-related courses, a

semi-structured interview with final-year students was conducted. A total of 10 (ten) students

from the University of Zagreb, Faculty of Organization and Informatics were interviewed. The

aim of the interview was to obtain qualitative and quantitative data related to the focus of the

interview. The interview focused on the final-year students from different study programs who

have passed different programming and object-oriented related courses and now at the end

of their journey can reflect on the teaching and learning approaches from different points of

view.

5.2. Interview design

Before conducting the interview, we requested permission from the Committee for Ethical

Matters (hr: Etičko povjerenstvo) at the Faculty of Organization and informatics. The request

to approve this interview is attached in Figure 6 and the Approval from the Ethical Committee

is presented in Figure 7. The detailed instructions for the interviewers are prepared in advance

and have been submitted to the Committee for Ethical Matters. These instructions are also

attached in the text below.

The students were familiarized and they gave their consent that the interview will be sound-

recorded so the researchers could replay the interview if there will be any doubts in the data

analysis phase. The students are also familiarized with the fact that all recordings will be

deleted upon completion of this project result.

Also, special care was taken to avoid discussing any particular teacher or teachers directly or

indirectly during the interview. All questions were placed by focusing on all programming

courses and all teachers instead of addressing any particular course or teacher.

41

Figure 6. Request to approve the interview

42

Figure 7. Approval from the Committee for Ethical Matters

The interviewers were two teachers from the University of Zagreb, both having several years

of teaching programming-related courses. To avoid possible different interpretations of the

results the interviewers had an initial meeting to discuss the questions, the flow of the

interview, and all other aspects of the interview. The instructions for interviewers were

prepared in advance and are copy-pasted here as follows:

43

Instructions to the interviewer

Note that the texts in blue are instructions for the interviewer (questions are written in black).

The answers must be written in the provided template (excel file).

All questions are optional.

The interview is to be voice recorded.

Introduction

a. Introduce yourself

b. Explain the purpose of the interview:

The University of Zagreb, Faculty of organization and informatics along with four other

universities from Slovakia, Germany, the Check Republic, and Serbia, and five high schools

from the same countries is running an Erasmus+ project which aims to identify and eliminate

the gaps between high school learning outcomes and university required input skills and

knowledge related to object-oriented programming. One of the outputs of the project will be

an innovative high school course in games development which will introduce high school

students to the basic concepts of object-oriented programming (in order to better prepare

students for universities as well as to increase their motivation for enrolling in STEM study

programs in general).

Thus, we are currently analyzing the innovative teaching methods and approaches that could

be used in that new high school course.

As a university student, you have already completed several courses related to object-

oriented programming as well as programming in general and with this interview, we would

like to ask you about your experiences which are related to teaching methods.

c. Explain that the answers will be treated anonymously and that the interview will be voice

recorded. Put the password of the candidate in excel and start recording by introducing the

password.

Profile

1. Some personal information is needed to contextualize the answers regarding other

responders. Gender, Study program, Year of enrollment, Year of study, High school profile…

(The possible answers are in the template, please write the answers in the provided template

– Excel file)

2. What was the level of knowledge in programming and object-oriented programming gained

in your high school education? The possible answers (no knowledge, low knowledge,

moderate knowledge, above average knowledge, high knowledge) are in the template, please

write the answers in the provided template – Excel file)

44

3. How high was your motivation and interest in learning programming during your studies? The

possible answers (no interest, low interest, moderate interest, above average interest, high

competencies) are in the template, please write the answers in the provided template – Excel

file)

4. Which level of competencies have you gained during your studies in terms of programming in

general and object-oriented programming? The possible answers (no competencies, low

competencies, intermediate competencies, above average competencies, high competencies)

are in the template, please write the answers in the provided template – Excel file)

5. Which courses related to programming have you passed, how much has that course

contributed to your knowledge, and what was your final grade? Please write the answers in

the provided template)

Teaching skills and competences

Introduction: The skill is the ability to perform certain physical tasks or activities in the desired way,

while the competencies are the broader term that includes the skills, knowledge and attributes that

enable a person to perform effectively in a job or situation. Please ask questions before giving

examples, and use examples only if necessary. Some examples of skills can be the use of ICT,

development skills, communication skills, skills related to the use of development environment, etc,

while the examples of competencies could be data modeling, methodological development, problem-

solving approach, teamwork and collaboration, organization and planning, classroom management,

facilitation and engagement, assessment and mentoring, flexibility and adaptability…

6. Related to programming courses (and maybe other courses) can you enumerate the skills that

you can recall that teachers had and that, in your opinion, contributed to the overall course

delivery (success)? (Answers are to be written in the excel file.)

7. Related to programming courses (and maybe other courses) can you enumerate the skills that

you can recall that teachers were lacking and that, in your opinion, contributed to the overall

course delivery (success)? (Answers are to be written in the excel file.)

8. Which skills according to your opinion teachers should have in order to successfully deliver a

programming or object-oriented programming-related course? (Answers are to be written in

the excel file.)

9. Related to programming courses (and maybe other courses), can you enumerate the

competencies that you can recall that teachers had and that, in your opinion, contributed to

the overall course delivery (success)? (Answers are to be written in the excel file.)

10. Related to programming courses (and maybe other courses), can you enumerate the

competencies that you can recall that teachers were lacking and that, in your view,

contributed to the overall course delivery (success)? (Answers are to be written in the excel

file.)

11. Which competencies according to your opinion teachers should have in order to successfully

deliver a programming or object-oriented programming-related course? (Answers are to be

written in the excel file.)

45

Teaching practices, methods, and tools

Introduction: The course content could be delivered in different ways. There are many novel and

modern teaching practices, methods, and tools that could be used to help students understand the

knowledge, apply the knowledge, keep concentration, increase motivation etc. Please ask questions

before giving examples, and use examples only if necessary. Examples of teaching practices and

methods could be gamification, work-based learning, team-based learning, table-based learning,

project-based learning, project-solving approach, flipped classroom, hybrid approach, blended

learning, short quizzes, and home preparation. Examples of tools include both programming tools and

didactic tools such as (Git/Github for versioning, Wiki or Confluence for documentation, Jira for

teamwork and agile practices,

12. Related to programming courses (and maybe other courses), what was the organization of the

lectures? Were there any innovative teaching methods applied? Which methods do you find

useful and which are obsolete? (Answers are to be written in the excel file.)

13. Related to programming courses (and maybe other courses), what was the organization of the

seminars or exercises? Were there any innovative teaching methods applied? Which method

do you find useful and which are obsolete? (Answers are to be written in the excel file.)

14. Related to programming courses (and maybe other courses), what were the technologies and

tools used? Were there any innovative tools used? Which tools do you find useful and which

are obsolete? (Answers are to be written in the excel file.)

15. Related to programming courses (and maybe other courses), what were the techniques and

practices used for evaluation? Were there any innovative techniques and practices used?

Which evaluation methods do you find useful and which are obsolete? (Answers are to be

written in the excel file.)

Closing the interview

16. Finally, are there any other elements of teaching or factors you think are important to be

considered when teaching programming or object-oriented programming? Is there anything

you wish to add?

Closing of interview: Thank you very much for your cooperation. It has been exciting to talk with you,

and I am sure your help will be of great use in the study we are conducting. I wonder if I can contact

you on a future occasion to request further clarification of information or any additional contribution

to the project.

46

5.3. Conducting the interview

Interviews were strictly done in accordance with the GDPR and FOI’s ethical commission. For

every student, the following data were collected:

● Gender
● Current study program
● Year of university enrollment
● Current year of study
● Type of high school they attended
● High school programming knowledge

■ of programming
■ of OOP

● Motivation and interest in programming
● Gained competences

■ in programming
■ in OOP

● Passed programming courses, their knowledge contribution, and final grades
● Skills and competences which the teachers had, lacked, and should have had.
● Innovative practices, methods and tools used in lectures, exercises, and evaluations.
● Other important aspects of college education on FOI.

The data was collected during the time span of several days and we collected the data in

anonymized form in google spreadsheet as presented in the following screenshot.

Figure 8. Spreadsheet with collected data (part 1)

47

Figure 9. Spreadsheet with collected data (part 2)

5.4. Results of the analysis

A total of 4 female students and 7 male students were interviewed. 6 of these students are

currently enrolled in postgraduate studies and the remaining 5 are currently in undergraduate

studies. Two of the students on postgraduate studies are studying “Organization of business

systems”, two are studying “Databases and bases of knowledge”, and two students are

studying “Informational and programming engineering” study programs.

All students finished some sort of a Grammar school (Gymnasiums), except for two who have

finished technical schools for computing. It seems as if high schools had little impact on

differences of students’ programming knowledge prior to enrolling into college. For example,

out of three students from natural science and mathematics grammar schools, one rated his

pre-college programming knowledge as “low”, another one as “moderate”, and the third one

as “high”. Three students from general grammar schools rated “no knowledge” in the same

area, but a fourth one from the same type of school rated it “moderate”.

Students had completely different programming knowledge before attending college, but

reported they’ve gained between intermediate and high levels of knowledge of

programming in college. One student from the obsolete PITUP study reported he gained no

competences in object-oriented programming (OOP). Other students reported they gained

intermediate or high knowledge of OOP.

Students have also rated different course impacts on programming knowledge. Not all

programming courses were mentioned, but only those which the students remembered to

have had an impact or to have been important during their study. In order to perceive the

impact of each programming course, course ratings were transformed into numbers and

average was calculated. Transformation was done in the following order:

48

Table 4. Perceived course knowledge impact enumeration

Perceived course knowledge impact Transformed number of rank

No contribution 0

Low 1

Moderate 2

Significant 3

High 4

Courses were then sorted primarily by their calculated average grade of knowledge

contribution, and then by the number of mentions in the interviews. Average grades were

rounded to one decimal. Top 10 courses from students’ answers sorted this way are shown

below:

Table 5. Coures everage grades

Course name Course average grade Course mentions

Advanced web technologies
and services

4 2

Building of Web Applications 4 2

Web programming 4 1

Software Engineering 3.6 9

Web Design and
Programming

3.6 5

Software Analysis and
Design

3.3 4

Computer Graphics 3 1

Network 2 3 1

Physical modeling of
databases

3 1

It’s obvious that Software Engineering, Web Design and Programming, and Software Analysis

and Design courses had a significant impact on most students (above the grade of 3 with most

mentions). Some other courses well worth mentioning are Advanced web technologies,

Building of Web Applications, and Web programming, all three with a grade of High.

It is worth noting that only some of these courses are object-oriented. Others were mentioned

for their contribution to learning programming concepts.

49

Teacher skills were differently evaluated. Some commended how teachers presented

programming or how interested they seemed, others praised communication skills and

willingness to help. On the other hand, it was also noted that some teachers didn’t show

enthusiasm for their course or for the programming itself, or were unclear in their explanations.

All in all, students’ experiences differed so much that it was not possible to define which skills

the teachers lacked, but the results clearly suggest which skills college teachers should have.

Students mostly noted that teachers should motivate students by explaining why a certain

topic is being lectured, by giving interesting real-world stories related to the materials, by being

available for additional explanations, etc. Teachers should organize and structure learning

materials well and not get lost in them.

Innovative practices used in lectures that were mentioned are the demonstrations by

examples, teamwork, discussions, short quizzes, usage of multimedia and interactive

materials when explaining and executing the code, invited lectures or other display of real life

examples.

There weren’t many mentions of innovative practices used in exercises, but those mentioned

were teamwork, recorded materials for learning at home, and demonstrations by teachers

followed by students’ further research.

Tools that have been proved useful for students while mastering the materials were mostly

modern IDEs and platforms such as Visual Studio, Visual Studio Code, Github, Jira,

Confluence etc. Unique tool “Verifikator” was mentioned. It’s created by FOI teachers and

used in the Programming 2 course. However, one student used it as a good example, and

another held a grudge against it for being too opinionated.

Students believe they should be evaluated multiple times during the semester, not just by one

final exam. Online evaluation was mentioned, but with its shortcomings. Term papers were

mentioned as a good method for evaluating student’s practical knowledge. Gamification was

also mentioned as a good tool for motivating students to engage more with the course.

5.5. Conclusions on experiences from students

It seems that high school has little impact on programming knowledge. It’s probably owing to

the quality of teachers in schools and intrinsic motivation.

Furthermore, it seems study programmes don’t have a very strong impact on programming

knowledge. All students from university courses gained intermediate and high knowledge in

OOP, except for one, from the obsolete PITUP study. However, PITUP study was not a

university study, but a professional study not meant to delve too deep into programming

concepts.

Software Engineering is rated by most students as a major contributor to programming

knowledge on FOI. Software engineering as a course also happens to be heavily object-

oriented. If OOP4Fun could move object-oriented programming into high schools, this course

could explore more complex topics and contribute even more.

50

Students didn’t universally praise or criticize the same teacher skills and competences. Some

found that teachers had great communication skills and enthusiasm, others claimed the

opposite. The reason behind that is probably the different set of teachers on courses and study

programmes themselves. It’s good that all qualities were enumerated as existent in all

interviews, which means there are a number of quality teachers on FOI.

A thematic analysis of teacher skills and competences was conducted. Interview was designed

to separately question skills and competences, but due to failure of students to separate the

two while answering, they were combined in analysis with heavier emphasis on skills.

Qualitative answers were categorized according to similarity of terms used. A total of 10

categories were collected, each describing its own teacher quality:

- Teacher availability - how much teachers are open to helping students outside

classroom

- Knowledge of subject - how well do teachers manage to explain the materials

(e.g. with their own examples)

- Communication skills - how do teachers communicate with students

(e.g. include them in discussions)

- Presentation skills - how well do teachers explain the materials in their lectures

- Real life example - how well do teachers connect real life examples with the lectures

they’re holding

- Motivation - how well do teachers motivate students in order to create interest for the

subject

- Self-motivation - how much are teachers motivated to hold lectures

- Flexibility - how much are teachers flexible when confronted with students’ demands

- Up-to-date - how modern are the teaching materials

- Creativity - using non-usual methods of teaching

Number of recurrences of categories was counted both in “Had” and “Should have” columns

separately. The result of thematic analysis is shown in Figure 10.

51

Figure 10. Teacher skills - comparison

It’s apparent that students mostly commended FOI teachers for being knowledgeable about

the subject they were lecturing and for having good communication skills. However, no one

mentioned that teachers were self-motivated or that they had up-to-date materials.

Unfortunately, those virtues were only noted as something teachers should have. It would also

be good for college teachers in general to make sure they are flexible and creative enough to

make learning their courses as enjoyable as possible.

Finally, students remarked that there should be more different tools and programming

languages in earlier years of study. They believe programming concepts could be simplified

using a visualization tool. Also, there was a complaint that OOP was not properly introduced

because focus was partly on covering more basic concepts or narrower topics which would

be more appropriate in separate courses.

52

6. Empirical results from UNIZA

UNIZA, mmijac@foi.hr

6.1. Introduction

The Faculty of Management Science and Informatics from UNIZA organized several

workshops with the goal of making OOP more attractive among high school students. Two of

the workshops were Active motivational workshops organized in 2020 as a part of the LOOP

project (which received a grant from E-schools for future by Orange Foundation). The third

workshop was a standalone workshop organized in 2022 as a Winter school of programming.

During the first workshop, 2nd year students had two days to develop two games (inspired by

popular Icy tower and Tank battle games). Python programming language and PyGameZero

module were used as tools. The second workshop was organized for 4th year students, who

were given two days to develop a game which simulates the Enigma machine (for ciphering

and deciphering messages from the 2nd World War). In this workshop students used Java

programming language and one of the mainstream popular IDEs. During the third workshop

students of the 3rd and 4th year of high school were given 3 days to develop a game using

Java programming language and Greenfoot IDE.

The feedback obtained from participants after the workshops were done indicates that

interesting topics, game-based learning and OOP are great combinations to motivate students

to enter the world of programming and STEM field. In the following section more details about

each individual workshop and their results is provided.

6.2. Active motivational workshops (Project LOOP)

Project LOOP was realized in 2020. It was supported with grant e-schools for future by Orange

Foundation. Project was realized in cooperation with Gymnázium Viliama Paulinyho-Tótha in

Martin, Slovakia (grammar school) [1]. Among others, one goal of the project was to make

informatics more attractive among students as well as to enhance the knowledge of students

of last year of study in the field of object oriented programming (OOP). Lectors prepared

„active motivational workshops “, that were held online due to pandemic of COVID 19. The

workshops were offered for students of grammar school and technical school:

● For the students of second year of study, PyGameZero module of Python

programming language has been used. Students created within the two days

two games (inspired by popular Icy tower and Tank battle games).

● Students of the fourth year of study have used programming language Java and

proper IDE to study basic principles of OOP. Within two days they created

application Enigma, capable to cipher and decipher messages from World War 2.

● As a side note, we add that there was also a workshop oriented for web

technologies prepared for students in their third year of study. Since this

workshop is out of scope of project OOP4fun, we have not included it into here

presented analysis. However, the number of participants indicated, that

interesting topic is very motivational factor for students.

Two of the aforementioned workshops were led by the team of researchers and experts from

the Faculty of Managements Science and Informatics. Object first principle as well as game-

53

based development have been used. After the workshops were completed a feedback from

students was collected, including the data on the type of school participants were attending,

as well as participants opinion related to held workshops and lecturers.

The feedback was generally positive, i.e. students agreed on a professional but friendly

approach of lectors, as well as on very interesting topics of workshops. Also, from the collected

data, we can see that students of technical school had bigger motivation to attend the

PyGameZero workshop (2nd year), while students of grammar school were more focused on

the Enigma workshop (4th year). This might indicate that students of technical schools are

very early accustomed to STEM oriented programs, while students of grammar schools still

need a bit of push in the earlier stages of their higher education.

The overall results indicate that the correct approach has been chosen. Therefore, we

consider educational materials for teachers on the base of light OOP and game-based

development to be validated as a correct approach with potential to succeed in pedagogical

praxis after pilot deployment. Using game-based development can be used with benefits to

motivate students into studying STEM oriented fields. Moreover, we see that light OOP

approach will be able to transfer to different programming languages or IDE (using this

feedback, we conclude PyGameZero to be successfully tested). This result of analysis will be

taken into consideration when creating outputs for respective project goals.

Figure 11. Number of participants on workshops

 Figure 12. Ratio of participants from grammar schools on workshops

54

 Figure 13. Ratio of participants from technical schools on workshops

6.3. Feedback analysis of Winter school of programming

Winter school of programming 2 was realized in 2022. Workshop was realized in Faculty of

Management Science and Informatics, in duration of 3 days. Goal was to create a game using

Java programming language and Greenfoot IDE. Attendees of the workshop had an

opportunity to get a certificate of successful completion of the workshop, which granted the

acceptance for the university studies. For the workshops, students of last two years in high

schools were approved to enroll. Participants came from grammar schools, technical schools

and vocational schools.

Mentioned workshop was led by the team of scientists and experts from the Faculty of

Managements Science and Informatics. Object first principle as well as game-based

development have been used. We collected feedback after the realization of the workshop

which included following data: type of school, lecturers’ opinion on what attendees learned,

students’ opinion on the lecturers and the workshop content.

As in the previous workshops, the general feedback was a positive one, both from the students

and the lecturers. Participants from all three types were rated with regard to how much they

learned during this workshop, and as can bee seen from provided graphs, a majority of them

learned “A lot”, while the rest of them learned at least “Something”. Most importantly, no

participants regardless of their school and prior knowledge were left without learning anything.

Again, results indicate the validity of the chosen approach. Therefore, we consider educational

materials for teachers on the base of game-based development and Greenfoot IDE to be a

legitimate approach with potential to succeed in pedagogical praxis after pilot deployment.

2 V. Lendel, „ONLINE škola programovania 2022 - registrácia pre stredoškolákov spustená,“ 16 12
2021. [Online]. Available: https://www.fri.uniza.sk/aktuality/online-skola-programovania-2022-
registracia-pre-stredoskolakov-spustena.

55

 Figure 14. Personal opinion about the lector

 Figure 15. Personal opinion about the amount of new information students learned

 Figure 16. Ratio of personal opinion about the amount of new information students of
grammar schools learned

56

 Figure 17. Ratio of personal opinion about the amount of new information students of
technical schools learned

 Figure 18. Ratio of personal opinion about the amount of new information students of
vocation schools learned

6.4. Conclusions on empirical results from UNIZA

Three separate workshops with participants from different high schools and different years of

study were conducted in order to investigate whether using a combination of interesting topics,

OOP and game development has sufficient motivational potential to create an interest in

programming and STEM fields. The gathered experiences and feedback confirmed this as a

legitimate approach. Indeed, both students and lecturers gave positive feedback in terms of

motivational and interesting topics, used technologies and the acquired skills. All three

workshops shared interesting topics and game-based development, however, the

programming languages and environments varied. This included using Python and Java with

conventional IDEs, as well as Java with Greenfoot IDE. While workshop participants managed

to successfully accomplish their tasks regardless of the chosen programming language, the

Greenfoot IDE did stand out as it was particularly constructed for gradual and visual learning

of OOP and game development.

57

7. Empirical results from GYPCE

Josef Rak <peparak@gmail.com>

7.1. Introduction

In the school year 2022/23 a test of usage of Greenfoot at Gymnazium Pardubice (GYPCE)

was made. Students in the second and third year of study are chosen. Algorithmization is

taught in the second year of study in mandatory subject Informatics and in the third year of

study in optional subject Seminar of programming. Before this test only Scratch was used in

this school to teach programming skills and only with small time dotation. Time allocation in

the second year of study was 4 hours. In the third year of study 18 hours. In the second year

of study Greenfoot used to show students how to make a simple computer game. After

introduction to Greenfoot and showing basics of Object-oriented-programming concepts

students received a pre-prepared project of a computer game to finish. In the third year of

study, the game was made from the beginning. Due to greater hour allocation, 3 computer

games were created. Two games by following the instructions from the teacher and one as an

exercise on students' own.

The aim of the test was, if Greenfoot is suitable for teaching programming skills in the school

and if students will be able to write code in Java. Idea in the school was to find a bridge

between Scratch and Java, which is taught in the Seminar of programming.

Next motivation for using Greenfoot is to improve OOP skills and for better understanding of

OOP principles.

7.2. Greenfoot test results

After the Greenfoot usage students were asked to fill the following form.

1. Was Greenfoot your first programming experience (Y/N)?

2. If not, write your programming experience (Scratch, Java, php, etc.).

3. I understood the Greenfoot environment and would be able to create a computer game

in it (Y/N) ?

4. If so, what amount of time would you need in the timetable for this.

a. Of that teaching hours

b. Of that hours of independent work

5. I was intrigued by the Greenfoot environment: 1 worst – 5 best

6. I learned something new: 1 worst – 5 best

7. I take the experience of the Greenfoot environment as a benefit for my further

education: 1 worst – 5 best

8. How user friendly is the Greenfoot environment: 1 worst – 5 best

9. How is Greenfoot applicable to teaching at our school: 1 worst – 5 best

10. I would be in favor of including the Greenfoot environment in the teaching of

algorithmization at our school: 1 worst – 5 best

11. Describe in a few sentences what interested you in the Greenfoot environment, how

you worked with the environment and how you liked Greenfoot.

58

12. What did you dislike about Greenfoot, what did you find difficult and what did you

dislike?

Overall, 56 answers were collected from 8 students from the third year of study in optional

subject seminar from programming and from 48 students from the second year of study in

mandatory subject informatics. For the first question if Greenfoot was first programming

experience the following results are obtained.

 Figure 19. Greenfoot as first programming experience

For more detail of this result, the following graph and table shows student’s programming

experiences.

 Figure 20. Experience in programming languages

Table 6. Experience in programming languages

 scratch python java c# php javascript other

2nd year 23 7 7 2 0 4 3

3rd year 6 2 2 1 2 0 0

59

 Figure 21. Understanding of Greenfoot environment

For the second question we recognized that more than 50 percent of students understand the

Greenfoot environment and that they will be able to use Greenfoot to make their own computer

game. Following graph shows how much time of teaching and independent work students

think they need to create their own game. The average value is 3 hours of teaching and 3

hours of independent work.

Figure 22. Time for making own computer game

For the last six questions (5 – 10), students were given the opportunity to answer on a scale

of 1 – 5, where 1 meant the strictly no, 2 meant rather no, 3 meant neutral answer, 4 meant

rather yes and 5 meant strictly yes.

60

Figure 23. Intrigation with Greenfoot environment

Figure 24. New knowledge

Figure 25. Benefit of Greenfoot

61

Figure 26. Friendliness of Greenfoot environment

Figure 27. Greenfoot applicability in school

Figure 28. Favoritization of Greenfoot

From the graphs we can see that feedback was positive. It is important to emphasize that

our school has a comprehensive study program and, in addition to students who are thinking

about technical education, students of humanities, languages and medicine also took the test.

At the end let us write some student answers to the last two questions.

62

Q11. Describe in a few sentences what interested you in the Greenfoot environment, how you

worked with the environment and how you liked Greenfoot.

· “quite interactive and fun, a bit of a problem to remember what to do and how to do

it”

· „It is a different and probably more understandable way for many to learn and

understand the programming process in an environment similar to java.“

· “I was intrigued by the variety of options in greenfoot. After a few hours of instruction,

it is really possible to create a relatively fun and sophisticated game.”

· “I liked and enjoyed working in Greenfoot and its environment. It was a nice

enrichment of the lesson and also a demonstration of a specific use of programming.”

· “A good transition between simple programming (e.g. in Scratch) and programming

in a more complex language. Comprehensible environment, well-designed graphics.”

· “Transforming something almost abstract into something more imaginable and more

graspable”

· “I worked well in the Greenfoot environment, the best thing, in my opinion, was that

we saw for ourselves exactly what we were going to do by modifying the code, and

therefore could better imagine what exactly would be done for the next code writing.”

Q12. What did you dislike about Greenfoot, what did you find difficult and what did you dislike?

· “The overall environment, in my opinion, is not beginner friendly at all”

· “The complexity of the names when I want to use a function.”

· “I didn't have enough time to understand the syntax.”

· “Difficult navigation in the environment. Unsightly environment.”

· “I would need more independent work, I didn't have enough time to explain it like

this”

7.3. Conclusions on empirical results from GYPCE

Most important fact is that we recognized that more than half students are able to make simple

computer games after a short Greenfoot course. We recognized that students were able to

write Java code. From the feedback we understood that there were some problems with

mistakes in Java code which is not intuitive for beginners. But there is possibility to start Stride

and then continue with Java and also to give bigger hour dotation as was recognized from the

feedback to question 4.

63

9. Innovative teaching and learning ideas

lmasnec@foi.hr, zstapic@foi.hr, ghajdin@foi.hr, dplantak@foi.hr

9.1. Teaching and learning approaches

Taking into consideration the results of all above mentioned activities we identified the

following teaching and learning approaches that could be used in the classroom to increase

the level of innovation and to increase the motivation of students to the programming in

general.

• Peer learning - is a part of the learning process in which students learn from and with

each other. It can be a standalone activity, such as a part of working in pairs or groups,

or it can be a part of more complex learning activities such as project based learning.

• Team teaching - is a process of teaching where teachers work (most usually) in pairs

in the same classroom. With this teaching approach teachers usually support

interdisciplinary teaching and learning, thus facilitating holistic understanding of the

topic at hand. Team teaching can be conducted with a pair of teachers of the same

course, especially in larger classroom groups when teaching complex topics which

require a lot of individual student-teacher interaction.

• Inquiry learning - students can explore different questions which arise during the

learning process. Inquiry learning can facilitate student’s process of discovery,

especially if they are seeking for new ideas or possible solutions. It is also an integral

part of more complex teaching and learning approaches, such as project based learning.

• Flipped classroom - teachers can facilitate students in the learning process through

guidance and instructions related to acquisition of initial basic knowledge at home, as a

part of homework, usually accompanied by video teaching materials, which helps

students prepare for the class. In this approach understanding and application is jump

started with initial knowledge and questions , thus during the class students can focus

on higher levels of knowledge and receive support from a teacher in school.

• Problem-based learning - problem-based learning can be based on the hypothetical,

but also real-world problems which boost students' motivation. One of the integral parts

of problem based learning is problem posing where students need to identify the

problem, deduct what they know and what they must solve. To solve a problem students

usually need to acquire new knowledge or think of creative ways of applying existing

knowledge in a completely new scenario.

• Interdisciplinary learning - real life situations are often complex and utilize knowledge

from different subjects. Interdisciplinary learning facilitates learning through a

combination of different school subjects. It can be further supported through team

teaching, project based learning or other complex learning and teaching approaches.

• Blended learning - is an educational method that combines traditional classroom

learning with online instruction.

• Gamification - is based on implementation of game mechanics in the teaching and

learning process. The goal is to positively influence students' motivation and progress. .

For example, for each correct answer that a student gives to a given question , he would

receive 100 EXP (experience points). These experience points can later be used for

bonus points or “unlocking” a new advanced topics that provides more information on a

given subject.

• Visual learning - emphasizes the use of visual aids, such as diagrams, charts, video

and animations, to enhance the learning process. In the context of teaching

64

programming through web applications, multimedia learning can involve interactive

visualizations that help students understand abstract concepts more easily.

• Block-based programming - is programming where code is represented as blocks or

puzzle pieces that can be dragged and dropped to create visual programs. This is for

beginners and easy to understand. In a web application setting, block-based

programming interfaces often provide immediate visual feedback, allowing students to

see the results of their code changes instantly.

9.2. Teaching and learning materials related to object-oriented programming (OOP)

Taking into consideration the results of all above mentioned activities we identified the

following teaching and learning materials related to object-oriented programming (OOP) that

could be used in the classroom to increase the level of innovation and to increase the

motivation of students to the programming in general.

• Alice Programming - offers a lot in the context of learning object oriented programming.

In particular, setting up a "computer game"/animation scene involves clarifying the

context of the procedure and the class of objects, and visually shows the execution of

the procedure on the objects. The form of the course can certainly be used. Thus, tasks

with attached files of the beginning/end of solving and videos that deal with these tasks.

• Greenfoot teaches OOP with Java - create 'actors' which live in 'worlds' to build games,

simulations, and other graphical programs. Greenfoot is visual and interactive.

Visualization and interaction tools are built into the environment. The actors are

programmed in standard textual Java code, providing a combination of programming

experience in a traditional text-based language with visual execution.

Software for learning programming in a simple and fun way. There is a book: Introduction

to Programming with Greenfoot, Object-Oriented Programming in Java with Games and

Simulations. On the web is the Greenroom - a teacher community and provides

resources (slides, worksheets, project ideas, tests, etc.) and a teacher discussion forum.

You need to register and log it to look at the community because the OOP4Fun project

application mentions Greenfoot.

• Computer thinking and programming - material for students to independently acquire

content related to learning outcomes: define a logical expression for a given problem;

analyze the problem, define input and output values and identify steps to solve the

problem; apply simple data types and argue their selection, apply different types of

expressions, operations, relations and standard functions for modeling a simple problem

in the chosen programming language. The material consists of text, images, videos and

interactive objects.

• Virtual classroom - group work in a virtual classroom (Teams). For example, in our

use-case, students could be divided into groups that represent classes. One student

defines attributes for a specific class, another one a method, another student another

method etc., and finally they're joined into groups by classes they defined.

• Textual online course - introductory C++ tutorial designed to give the user

understanding of how this language works.

• Data discovery - the lessons are designed to engage students with real-world data

relevant to content taught in middle school and high school science courses. The Python

lessons guide students in computational thinking to create simple programs to

manipulate data. The lessons also provide students (and teachers) with instructions and

guidance in the use of these technologies. Worksheets and supporting files are linked

to from links at the top of each lesson webpage and from the downloads page.

65

10. Aligning results with PR1 results

In the following chapter we have tried to align the results of our analysis with the gaps and

needs recognized in the results of the vertical analysis performed within project result 1 (PR1).

The table below enumerates mentioned gaps and needs on the left hand side and on the right

hand side brings possible novel and innovative teaching approaches and ideas which could

be used to fulfill them.

10.1. PR1 and PR2 results allignment

The results are presented from the point of view of two analyzed perspectives:

● Perspective on curriculum development, learning outcomes, teaching materials and

teaching activities

● Students' and teachers’ point of view regarding teachers’ competences

Table 7. Mapping gaps to possible teaching approaches

PR1 findings PR2 findings

Perspective on curriculum development, learning outcomes, teaching materials and

teaching activities

Teachers recognized that a new curriculum

should be developed.

In high schools, OOP should be introduced by

topics covering basic programming concepts

in the beginning and narrower topics related to

OOP would be more appropriate in separate

courses.

It is crucial to connect and encourage

information exchange between school and

university teachers, with the involvement of

policymakers who define curricula related to

programming skills at all educational levels.

From a course/instructor perspective and from

a course design perspective, the following

innovative forms of instruction/knowledge

transfer should be used: Blended learning,

learning-by-doing, problem solving,

collaborative problem, teamwork, problem-

based learning, active learning, lab-based

learning. In addition, various forms of

innovative approaches should be applied in

lectures, seminars, and laboratory exercises.

The curricula of IT subjects in high schools

shows that OOP is poorly represented, with an

insufficient number of teaching hours.

High school curriculum does not recognize the

importance of the use of innovative tools (such

as Alice) which could help in overcoming lack

of motivation and knowledge shortcomings in

structural programming and OOP.

66

Games and gamification in general were

frequently used to motivate students to

program. Students liked the opportunity to be

creative or to compete for knowledge when

supported by an appropriate setting. From the

results of the literature review, three different

types of learning through games were

suggested: learning by playing, learning by

creating games, learning by using game-

related tools and learning with gamification.

Most university study programs teach

programming from the beginning, because of

the lack of a homogenous prior education of

students.

The overall goal of PR2 was to find appropriate

and innovative learning and teaching ideas

and approaches that would solve these issues.

As mentioned in the previous chapters there

are several identified good practices that could

be used to improve the achievement of

learning outcomes during the highschool

education.

However, it should be noted as well that

curriculum redesign should result in

introduction of OOP topics and set goals in

achieving OOP related learning outcomes as

well.

It is also important to select an appropriate

type of assessment: (online) questionnaires

are the only accepted method for assessing

students' enjoyment, usefulness, interest,

engagement, and simplification of

programming and OOP concepts which will be

defined on the high-school and not on

university level.

Freshmen students in general don’t possess

any notable competencies or skills related to

programming acquired at the high school level.

Student-to-student experience shows that

most of the students struggle with the very

basics of programming concepts.

By using teamwork in OOP assignments,

students would have the opportunity to share

their knowledge and transfer the

implementation of basic programming

concepts to other students (peer-to-peer

learning).

Students with higher prior knowledge reported

that it was acquired by self-learning activities

which shows that highschool students are

This project’s results will yield a set of
materials which will give a chance to highly
motivated students with solid prior-knowledge
to increase that knowledge through different

67

capable of self-learning algorithmic problem

solving if provided with good materials.

activities and roles. Such students could
significantly improve the overall achievements
of the whole group if they will be given a
chance to share the knowledge or to lead the
teams.

For the first few weeks or months students

seem not to know “where they are and what is

going on”, and what is even worse they seem

not to be very interested in programming and

they see no purpose in programming

knowledge.

As several PR2 outputs point out, the main

goal should be to incorporate learning and

teaching tasks into stimulating and

entertaining activities that will have a positive

impact on higher attendance and completion

rates. This would increase the interest of high

school students for programming in general

and eventually lead to better understanding of

programming and OOP concepts. In that case

students would not be “lost” when faced with

university curricula.

Education in the field of information

technologies is usually associated with

colleges and higher schools, but practice has

shown that the training of future IT

professionals should start much earlier.

Use of more different tools and programming

languages in earlier years of study should be

encouraged. Programming concepts could be

simplified using visualization tools. Although

some countries have already introduced the

use of some tools like Logo or Scratch, these

are interesting to elementary schools but not

to high schools. Thus, more advanced tools

that are designed to support OOP should be

used. We have recognized that Alice and

Greenfoot stand out among other tools.

The starting point and basis for effective

improvement of programming learning are

high-quality learning materials supported by

teacher training, classroom work, and

students' independent work activities.

As students reported, for teaching

programming it is important that teachers use

novel and up-to-date teaching materials and

employ creative teaching methods. Also, the

teacher's availability and flexibility to work with

students outside the classroom is necessary to

motivate students and generate greater

interest in the subject.

Innovative practices used in lectures that were

mentioned are the demonstrations by

examples, teamwork, discussions, short

quizzes, usage of multimedia and interactive

materials when explaining and executing the

code, invited lectures or other display of real

life examples.

68

There weren’t many mentions of innovative

practices used in exercises, but those

mentioned were teamwork, recorded materials

for learning at home, and demonstrations by

teachers followed by students’ further

research.

High schools should “open their doors” to a

new generation of future computer

professionals, the generations that grew up

with Facebook, Google and other Internet

services.

For learning and teaching of OOP concepts,

learning by creating the games showed the

significant effects for improving students

problem solving skills and engaging them in a

fun and entertaining environment.

Students' and teachers’ point of view regarding teachers’ competences

Teachers recognized a need for a new

legislative framework to cover issues related to

the lack of motivation for teachers with

programming knowledge to come and teach in

high schools, as, in their opinion, motivation of

high school teachers is very important.

The lack of a legislative framework which

would motivate teachers to embrace novel and

innovative teaching and learning methods in

programming and in OOP programming plays

a significant role. Thus, national strategies and

development agendas should introduce a set

of employment and motivational measures

that would solve this issue on the

implementation level. Although it is not in the

scope of this project to deal with these issues,

we strongly believe that the project results

including novel teaching and learning

materials and approaches would increase the

teachers’ motivation for this topic.

From student’s experiences it was not possible

to determine what skills teachers lacked, but

the results clearly indicate what skills teachers

should have regardless of their prior

educational background. Nonetheless,

knowledge of the subject matter and how well

teachers are able to explain the material (e.g.,

using their own examples) are the critical skills

teachers should possess.

Other skills recognized as important are:

● Communication skills - how do teachers

communicate with students (e.g. include

them in discussions)

● Presentation skills - how well do teachers

explain the materials in their lectures

IT experts are not eager to teach in high

schools, where salaries are low, so the

principals are forced to employ teachers who

have only partial knowledge of informatics,

and they are unable to cover higher demands

in teaching programming.

In Serbia and Croatia, as well as in Slovakia

and Czech Republic there is a significant

problem with knowledgeable staff teaching

computer science and mathematics.

There is an issue that final-year students in

Serbia and Croatia are encouraged to apply as

teachers in the high schools. In general, there

are not many professors who are educated,

educated to teach students the basics of

programming. Usually teachers who do not

have a full fund of classes in their primary

subjects such as Mathematics are teaching

informatics as well.

69

● The use of real-life examples - how well

do teachers connect real life examples

with the lectures they’re holding

● Pedagogical and methodical skills -

developing and enhancing teachers’

pedagogical content knowledge and

ability to apply effective instructional

methods and tools to help students to

overcome problems with programming

concepts in OOP.

Students mostly noted that teachers should

motivate students by explaining why a certain

topic is being lectured, by giving interesting

real-world stories related to the materials, by

being available for additional explanations,

etc. Teachers should organize and structure

learning materials well and not get lost in them.

10.2. Final remarks on the alignment

The overall conclusion from PR1 findings is that “there is a lot of work in front of all

stakeholders, legislation enforcers to prepare stable and motivating infrastructure and

environment, high-school curriculum designers to take into consideration the growing need for

programming knowledge and STEM in general, institutions educating teachers of informatics

to enable them to teach programming and related concepts, university curriculum designers

and university teachers to build on high-school knowledge and to students to take every

opportunity to acquire the skills and competencies required in the future dynamic market”.

Blended learning and flipped classrooms were recognized as the most dominant designs used

to improve students’ programming skill and motivation. The importance of fostering learning

of core principles of programming by focusing on student learning rather than instructor

teaching was emphasized. Various authors emphasized the importance of establishing the

context and framework that will enable students to deconstruct and reason about, as well as

the importance of providing ample scope for individual critical thought, design, and creativity.

The integration of multiple languages was also encouraged. Furthermore, flipped classroom

teaching approach was suggested as most suitable for active learning/teaching.

In general, it is crucial to connect and encourage information exchange between school and

university teachers, with the involvement of policymakers who define curricula related to

programming skills at all educational levels. This unified approach would make high school

students more ready and skillful for entry level at university programmes containing

programming courses

Developing and enhancing teachers’ pedagogical content knowledge and ability to apply

effective instructional methods and tools to help students to overcome problems with

programming concepts in OOP.

70

Following the repository analysis and literature review, the use of Greenfoot should be

introduced in introductory OOP courses and supporting materials should be based on

gamification. This approach will, in the experience of faculty from PR1, provide a solid

foundation for students to become more adept at learning algorithmic problem solving

independently. The benefits would be twofold: (1) low proficiency/no proficiency students

would be able to develop basic skills and competencies related to OOP programming, and (2)

students who already have some prior knowledge could be further engaged in active

instruction, which would encourage them to actively participate in class. This could reduce

dropout rates in the courses and increase students' motivation from the beginning.

71

11. OOP4Fun Learning Design

11.1. Learning design methodology

In order to make more informed decisions on how they approach designing learning activities

and interventions, a learning design methodology (LD) is used. (IO2. Learning Design Models,

2020) It enables teachers to be more informed and to be pedagogically informed. LD is a well

established approach to designing learning activities and in recent years there have been

several strong research initiatives that are trying to deepen the understanding of how LD

influences and how it is influenced by new technologies and innovative pedagogical practices.

One example is the Integrated Learning Design Environment (ILDE), which is a networked

system integrating collaboration functions, design editors and middleware that enables

deployment of the designed learning situations into Virtual Learning Environments. Another

example is CompendiumLD, which uses a flexible visual interface that enables practitioners

to articulate their ideas and map out the learning design as a set of learning outcomes (An

Integrated Environment for Learning Design, 2018).

Some other examples of well-implemented Learning Design tools include ScenEdit, IAMEL

(Bottino et al., 2010), and LDTool (Agostinho, 2011). These tools aim to support practitioners

in their task of creating more innovative and effective computer-supported learning situations.

Bottino says that the teacher’s primary role shifts from that of information giver, to that of

facilitator and guide, someone who has to incorporate mediation, modeling, and Coaching.

Bottino claims that this requires a high degree of adaptability to new schemes, models and

tools on learning and teaching. When it comes down to managing technology, that may take

up a great deal of time and intellectual energy. She resumes by stating that in the new

educational landscape, teachers and all those involved in designing and enacting learning

processes (trainers, pedagogical experts, designers, researchers etc...) are increasingly

required to take into account a huge variety of different elements, in an effort to ensure that

these form part of a coherent, manageable whole that responds effectively to learners’ needs

and that consents the full attainment of the intended educational objectives.

Learning design methodology is a process for creating effective and engaging learning

experiences for students. It involves the systematic analysis of learning goals, the selection of

appropriate learning activities and resources, and the evaluation of learning outcomes. The

process typically begins with an analysis of the learning goals and objectives, followed by the

identification of the target audience and their learning needs (Sharpe et. al., 2010). Conole

and Fill (2005) define a set of points how to approach developing a learning design toolkit:

1. Work closely with practitioners to analyze their methods, when creating or re-purposing

resources, and be guided by their requirements.

2. Enshrine good practice within the toolkit, such that it will guide and support teachers

as they create, modify, and share teaching and learning resources.

3. Research, understand and apply what is going on in the learning design field,

particularly evolving standards in the areas of sharing digital resources,

interoperability, searching, repurposing, and permissions.

72

4. Embrace new technologies, such as adaptive hypermedia and semantically structured

metadata, to provide a tailored development environment, accessing heterogeneous

data repositories across a grid service infrastructure.

5. Develop, test and evaluate a prototype toolkit with practitioners and then revise in light

of feedback.

Same authors define three more purposes for the learning design toolkit :

1. As step-by-step guidance to help practitioners make theoretically informed decisions

about the development of learning activities and choice of appropriate tools and

resources to undertake them.

2. As a database of existing learning activities and examples of good practice which can

then be adapted and reused for different purposes.

3. As a mechanism for abstracting good practice and metamodels for e-learning

Conole et. al. (2008) emphasizes the internet's impact on education. They say: “We now have

a wealth of research literature on the myriad of ways in which teachers have experimented

with different technologies to support learning.“ Conole et. al. state that although technology

has the potential to enhance learning, there exists a discrepancy between what technology

can do and how it's actually used. This disparity is partly due to insufficient comprehension of

how technology can be employed to provide specific learning benefits, as well as a deficiency

of appropriate guidelines for designing effective technology-based learning experiences.

Conole et. al. report seven reasons why adopting a learning design approach can be beneficial

(Conole et. al., 2008):

1. It can act as a means of eliciting designs from academics in a format that can be tested

and reviewed

2. with developers, i.e. a common vocabulary and understanding of learning activities.

3. It provides a means by which designs can be reused, as opposed to just sharing

content.

4. It can guide individuals through the process of creating new learning activities.

5. It facilitates reflection by the designer, by making the process more explicit

6. It creates an audit trail of academic design decisions.

7. It can highlight policy implications for staff development, resource allocation, quality,

etc.

8. It aids learners in complex activities by guiding them through the activity sequence.

To conclude this chapter, a learning design is a visual depiction of the educational journey

you've created for your students, outlining the order of learning activities they'll participate in,

and the materials and assistance available to assist them with each task. A learning design

methodology specifies how to be an architect of such a journey.

11.2. Innovative teaching scenarios for OOP4Fun

As mentioned in the introductory chapters and in the context of education and instructional

design, teaching scenarios (TSs) represent detailed descriptions or narratives that outline a

specific instructional situation or context. These scenarios are often used in teacher training

73

to simulate real-world teaching situations and thus we find it as the best tool to represent our

innovative teaching and learning ideas. As teaching scenarios typically include information

about the learning objectives, the content to be taught, the characteristics of the learners, the

instructional methods employed, and the assessment strategies used, it can be aligned with

the elements needed for our learning design artifacts as well.

In order to have a structured approach in defining several teaching scenarios we have defined

the following template that would be filled with concrete data related to a specific learning

scenario. Template contains a short description on how to define each element of the TS.

Table 8. Template for documenting learning scenarios

Title Give learning scenarios a descriptive and an attention-grabbing title.

Learning objectives Clearly state the intended learning outcomes. What should students

know, understand, or be able to do by the end of the scenario?

Target audience Specify the intended audience, grade level and pre-existing knowledge

for which the learning scenario is designed.

Scenario duration Estimate the time required to complete the learning scenario, including

any specific timeframes for different activities. E.g. teacher introduction

(5 min), research done by students individually (10 min), programming

solution in team (20 min), presenting/discussion (10 min).

Materials&resources List the materials, resources, and tools needed for both teachers and

students. This could include textbooks, online and multimedia

resources, software, etc.

Description ● Introduce the learning scenario, explain its purpose and

relevance.

● Outline the core activities that students will engage in to achieve

the learning objectives. Include details such as discussions,

hands-on activities, group work, competition, etc.

● Specify how students will be organized, i.e. are they going to

work individually or in a team. How large are teams gonna be?

● Explain what projects/problems/tasks will students be working

on. Recommendation is to use problem-based or project-based

approaches. Also, these should reflect real-life situations.

74

● Explain how projects/problems/tasks will be assigned to

students (teams).

● If working in teams, provide details on how they are going to

collaborate.

● Provide more details related to activities that students need to

participate in.

● If e.g. flipped classrooms are used specify what part of the given

topic students need to research by themselves.

Assessment Provide details related to how students’ effort and knowledge will be

assessed.

● Who is going to assess the students: (1) teachers, (2) students

their own work (self-assessment), (3) students each other’s

work (peer-assessment)

● What evaluation criteria will be used?

● How often will assessment be performed?

● etc.

Result dissemination Explain how students are going to disseminate their results to teachers

and fellow students. E.g. students (all or subset) can present their

results/solutions in front of the teacher and their peers, and then the

comparison and discussion may follow.

11.2.1. TS1: Introduction to Greenfoot: Exploring Game Development with Creativity

Title Introduction to Greenfoot: Exploring Game Development with

Creativity

Learning objectives By the end of this session, students will not only have successfully

installed Greenfoot and witnessed its capabilities through example

projects but will also have engaged in collaborative, hands-on play

within the development environment. This playful introduction sets the

tone for an exciting exploration of game development, encouraging

creativity, teamwork, and an enthusiastic approach to coding with

Greenfoot.

75

Target audience Secondary school students attending the OOP4Fun course. Basic

programming knowledge including variables, functions, iteration and

selection concepts.

Scenario duration Introduction (5 minutes)

Rush-hour challenge (10 minutes)

Playing games with teacher (30 minutes)

Team Formation and Project Assignment (5 minutes)

Team Collaboration and Coding (30 minutes)

Peer Review and Feedback (10 minutes)

Homework (30 min)

Competition grading (30 min)

Materials &

resources

Greenfoot webpage and download instructions.

Examples prepared by the teacher.

Internet resources for identification of other examples.

Description In this 90-minute learning scenario, secondary school students will dive

into the Greenfoot world by means of gamification, fun, research and

teamwork.

After the teacher introduces today's session, reflects on the previous

session and sets challenging goals, the rush-hour challenge begins.

Students are given the gamified assignment to find instructions,

download and install greenfoot (yet unknown development tool for

them) on their computers. The first three students are given tokens of

appreciation (badges, points, scores, sweets etc.).

The second surprise for them is that in the next 30 minutes they will be

playing games with the teacher. This is a teacher guided session on

opening, compiling and running one-two simple example projects (on

the introductory to medium level of complexity). This will show students

the basic elements of the Greenfoot development environment as well

as of basic procedures of handling the project files and assets.

76

Afterwards, the students will be grouped in the teams (3-4 students

each) and will be given a simple assignment. Teams should change

“something” in the given example project to make the game surprising

or fun. Team collaboration and coding (30 minutes) will have teams

work collaboratively on trying to change something in the given

examples. If they break the code beyond the line of being able to fix it

on their own they can ask for help from the teacher or can download

the “start version” again. This will be a good example why we should

use version control systems when coding.

One or two teams will present their work for peer review and feedback

and the group will discuss the results along with the teacher.

At home for homework, each student should search for examples of

Greenfoot games and should introduce his class to his favorite example

by uploading a link, description of what makes it his favorite example

and two-three screenshots of the development environment and

running game. As part of the gamification and motivation via

competition, each student should vote for three best games (it is not

allowed to vote for his own game). The winners are announced and

awarded with tokens of appreciation (badges, points, scores, sweets

etc.).

Assessment This activity will enable teachers to give formative assessment

feedback based upon the discussions and monitoring of students’

flipped classroom and teamwork.

The gamification represents non formal assessment but will increase

the interest, intrinsic motivation and learning outputs of the whole group.

The peer-review assessment will be performed online as a part of a

homework assignment. This will remind students of important aspects

of the session, will make them install Greenfoot, open different

examples and remind them of what was done during the class which

will increase the overall achievement of learning outcomes.

Result dissemination In order to disseminate their results to teachers and fellow students the

usual setup of the Learning management system (e.g. moodle will be

used). The students can continue the discussion on the topic on the

forum that is provided to them via the Learning management tool.

77

This learning design is also implemented in the learning design tool and can be found here

(http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details) and its delivery

aspects are presented in the figure bellow:

Figure 29. TS1: Introduction to Greenfoot in learning design

11.2.2. TS2: Exploring Classes and Objects through Game Development with

Greenfoot

Title Exploring Classes and Objects through Game Development with

Greenfoot

Learning objectives The purpose of this learning scenario is to introduce secondary school

students to the fundamental concepts of classes and objects in object-

oriented programming (OOP) using the Greenfoot tool. By immersing

students in a hands-on project to develop a simple game, this scenario

aims to make the abstract concepts of OOP tangible and applicable in

a real-world context.

Target audience Secondary school students attending the OOP4Fun course. Basic

programming knowledge including variables, functions, iteration and

selection concepts. Students should be introduced to Greenfoot in

general.

Scenario duration Introduction (5 minutes): Teacher introduces today's session, reflects

on the previous session and sets challenging goals 🙂.

http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details

78

Flipped Classroom Session (10 minutes): Students conduct

independent research on what objects are to be presented on the stage

of the game they are developing.

Discussion (10 minutes): Teacher guided discussion on recognized

objects and their classification in classes.

Greenfoot tutorial (25): Teacher guided tutorial on creating selected

objects in the game, emphasizing classes and objects.

Team Formation and Project Assignment (5 minutes): Formation of

teams (3-4 students each) and assignment of specific project that will

build on the outputs of the previous activity.

Team Collaboration and Coding (20 minutes): Teams work

collaboratively on designing and implementing their assigned projects.

Peer Review and Feedback (15 minutes): One or two teams will present

their work and the group will discuss the results along with the teacher.

Homework (30 min): Each team uploads their project, and peers

provide constructive feedback via homework activity. Each student will

evaluate one-two solutions from other teams.

Project work (60 min): Each team will utilize the knowledge by defining

game objects in the project they are working on continuously through

the whole year.

Materials &

resources

The textbook from the OOP4Fun project.

Resources from OOP4Fun project.

Project source code from Github/Gitlab.

Internet resources.

Description In this 90-minute learning scenario, secondary school students embark

on a captivating exploration of object-oriented programming (OOP)

principles of classes and objects through the lens of game development

using the Greenfoot tool. The session commences with a concise 5-

minute introduction by the teacher, establishing context, reflecting on

prior learning, and presenting challenging goals for the day. The core

activities encompass a 10-minute Flipped Classroom Session, during

which students independently research and identify objects for their

game. This is followed by a 10-minute teacher-guided discussion on the

recognition and classification of these objects into classes. The heart of

the session unfolds with a 25-minute Greenfoot tutorial, where students

actively participate in creating selected objects, emphasizing the

79

implementation of classes and objects. Team formation and project

assignment take 5 minutes, with teams of 3-4 students each assigned

specific tasks building upon the previous activity output. The

subsequent 20-minute team collaboration and coding phase fosters

teamwork, problem-solving, and practical application of OOP principles.

The session concludes with a 15-minute peer review and feedback

activity, where each team uploads their project for constructive

feedback from peers as a homework assignment. This well-rounded

learning scenario seamlessly blends individual research, class

discussion, hands-on tutorial, collaborative coding, and peer evaluation,

providing students with a holistic and practical understanding of OOP

concepts in the context of game development.

The students will have flipped-classroom research work, teacher-

guided hands on activities and teamwork with pear review.

The students will continue working on the game that was explained and

started previous sessions. The overall approach of the game

development will be a problem-based approach where students will

each session be faced with a certain problem (e.g. what object we will

have on some particular screen), and the end of the session will provide

a solution to the given challenge as well as introduction of novel OOP

concepts.

All learned concepts will be implemented in the team-project that

students are working on for their final grade.

Assessment This activity will enable teachers to give formative assessment

feedback based upon the discussions and monitoring of students’

flipped classroom and teamwork.

The peer-review assessment will be performed online as a part of a

homework assignment. This will remind students of important aspects

of the exercise, will make them critically assess other students' work,

will give them insights into good or not so good solutions of their peers

etc, and will increase the overall achievement of learning outcomes.

The work in the team-project that the students are working on will also

use these learning outcomes and knowledge.

Result dissemination In order to disseminate their results to teachers and fellow students the

usual setup of Github/Gitlab and Learning management system (e.g.

moodle will be used). The students can continue the discussion on the

80

topic on the forum that is provided to them via the Learning

management tool.

This learning design is also implemented in the learning design tool and can be found here

(http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details) and its delivery

aspects are presented in the figure bellow:

Figure 30. TS2: Exploring classes and objects in learning design

The usefulness of the visual representation in the tool are supplemented with the detailed

analysis of the quality of the learning design in general with different analysis reports.

12. Conclusions

Through the course of this document, we presented our varied efforts aimed at identifying,

describing and analyzing useful ideas for teaching object oriented programming. These efforts

resulted in several activities starting with analyzing existing teaching materials repositories,

performing systematic review of relevant research literature, then collecting university student

experiences and opinions through a series of interviews, and finally reporting on the results of

conducted programming workshops by one of the partner institutions.

The analysis of existing repositories of teaching materials included: MERLOT database, OER

Commons database, and Croatian repository of open educational materials. The MERLOT

analysis revealed a scarcity of teaching materials on object-oriented programming. A

subsequent investigation of 44 materials from OER Commons and the Croatian repository

identified 19 relevant resources for the PR2 goal of innovative teaching approaches. Deeper

analysis focused on object-oriented programming topics and pedagogical practices,

highlighting the scarcity of open educational resources specific to OOP. Some resources

showcased platform-specific applications, while others integrated contemporary pedagogical

methods. Lessons learned included the need for integrated solutions combining programming

http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details

81

and pedagogical aspects, a lack of emphasis on evaluation, and the suggestion to adopt

problem-based and project-based learning for a more realistic approach to programming.

During systematic literature review, blended learning and flipped classrooms emerged as

predominant designs for enhancing students' programming skills and motivation, emphasizing

student-centered learning over instructor-centric teaching. The literature stressed the

importance of contextual frameworks for deconstructing and reasoning about programming

principles, fostering individual critical thought, design, and creativity. Integrating multiple

languages was encouraged, with the flipped classroom approach deemed most suitable for

active learning. Games were widely employed to motivate students, allowing creativity within

a supportive framework, and collaborative activities were shown to enhance engagement,

confidence, retention, and performance. Learning through games was explored in three ways:

playing games, creating games, and utilizing game-related tools. Evaluation metrics included

difficulty estimations of code-writing tasks, final examination grading, and students' passing

ratios. Various tools, such as assessment systems, compilers, program submission systems,

drill-and-practice tools, and intelligent tutoring systems, were developed to support

programming education, effectively enhancing student learning.

Collected experiences and opinions from university students revealed that current high school

programming education has little to no impact on future OOP knowledge at university. While

this might be attributed partially to insufficient time dedicated to programming topics in high

school, a large part of this problem can be explained by the challenges related to motivating

teachers and students to delve deeper into OOP. Having a proper combination of interesting

examples, projects and tools might help mitigate this.

Conducted in three separate workshops with participants from diverse high schools and study

years, the combination of engaging topics, object-oriented programming (OOP), and game

development demonstrated significant motivational potential in sparking interest in

programming and STEM fields. Both students and lecturers provided positive feedback on the

appeal of the topics, utilized technologies, and acquired skills. As a result of described

activities it can be concluded that using games to teach OOP to high school students is a

credible approach, because it allows and often even promotes: (a) integration of contemporary

pedagogical and teaching practices to programming, (b) adoption of problem/project-based

learning for a more realistic approach to programming, (c) placing an emphasis on student-

centered learning, (d) student engagement and team collaboration, etc.

While performing analyses we came across different technologies that may be used for game-

based OOP teaching, not all of these technologies were particularly suitable for high-school

level. One of the technologies that stood out as a high-quality solution that is suitable for high-

school level and supported by major players in industry (e.g. Oracle) was Greenfoot IDE. This

tool was shown to be effective in facilitating gradual and visual learning of object-oriented

programming and UML through the fun ways of game development. These conclusions are

also supported by the results of the analysis of testing the use of Greenfoot in Gymnazium

Pardubice. For this reason, we recommend it as a basis for creating a syllabus for teaching

object oriented programming.

Finally, the culmination of our efforts has resulted in a set of innovative teaching and learning

concepts, as evidenced by the comprehensive analyses conducted throughout this project

result. The learning design methodology, detailed and defined in this chapter as well, serves

82

as a blueprint for planning and designing the implementation of the new approach. Leveraging

teaching scenarios methodology as a powerful tool, we have vividly depicted diverse

innovative approaches to education, creating a collection of teaching scenarios which are

already inserted into the Learning Design tool. These scenarios, exemplifying our commitment

to pedagogical innovation, are readily accessible for preview at http://learning-

design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details. Furthermore, in an effort to share

our insights and empower others, we have provided a template for defining teaching scenarios

for entire courses, extending this valuable resource to our esteemed project partners

responsible for PR3 and PR4. Together, these accomplishments underscore our dedication

to advancing the landscape of education and fostering transformative and innovative learning

experiences.

https://learning-design.eu/en/index
http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details
http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details
http://learning-design.eu/en/preview/bd6a3cf90d09a6b6495ecf82/details

83

13. References

Abbasi, S., Kazi, H., & Khowaja, K. (2018). A systematic review of learning object oriented

programming through serious games and programming approaches. 4th IEEE

International Conference on Engineering Technologies and Applied Sciences, ICETAS

2017, 2018-January, 1–6. https://doi.org/10.1109/ICETAS.2017.8277894

An Integrated Environment for Learning Design. (2018, April 24). Frontiers. Retrieved May 3,

2023, from https://www.frontiersin.org/articles/10.3389/fict.2018.00009/full

Berssanette, Joao Henrique, & de Francisco, A. C. (2021). Cognitive Load Theory in the

Context of Teaching and Learning Computer Programming: A Systematic Literature

Review. IEEE Transactions on Education, 65(3), 440–449.

https://doi.org/10.1109/TE.2021.3127215

Berssanette, João Henrique, & de Francisco, A. C. (2021). Active learning in the context of

the teaching/learning of computer programming: A systematic review. Journal of

Information Technology Education: Research, 20, 201–220.

https://doi.org/10.28945/4767

Bottino, R. M., Ott, M., & Tavella, M. (2010). Empowering the Design and the Sharing of

Learning Plans by Means of Net Technologies: The IAMEL System. In M. D. Lytras, P.

Ordonez De Pablos, A. Ziderman, A. Roulstone, H. Maurer, & J. B. Imber (Eds.),

Knowledge Management, Information Systems, E-Learning, and Sustainability

Research (pp. 336–342). Springer Berlin Heidelberg.

Conole, G., & Fill, K. (2005). A learning design toolkit to create pedagogically effective learning

activities. Journal of Interactive Media in Education, 2005(1), Art. 9.DOI:

https://doi.org/10.5334/2005-8

Conole, G., Cross, S., Brasher, A., Weller, M., Nixon, S., & Clark, P. (2008). A learning design

methodology to foster and support creativity in design. 978.

da Silva, J. P., & Silveira, I. F. (2020). A systematic review on open educational games for

programming learning and teaching. International Journal of Emerging Technologies in

Learning, 15(9), 156–172. https://doi.org/10.3991/ijet.v15i09.12437

De Assis Mota, A., Mota, L. T. M., & Morelato, A. (2004). Teaching Power Engineering Basics

Using Advanced Web Technologies and Problem-Based Learning Environment. IEEE

Transactions on Power Systems, 19(1), 96–103.

https://doi.org/10.1109/TPWRS.2003.821004

Examples of Learning Activities | Teaching & Learning | UTAS. (n.d.). Teaching & Learning.

Retrieved May 3, 2023, from https://www.teaching-learning.utas.edu.au/learning-

activities-and-delivery-modes/planning-learning-activities/examples-of-learning-

activities

https://doi.org/10.1109/ICETAS.2017.8277894
https://www.frontiersin.org/articles/10.3389/fict.2018.00009/full
https://doi.org/10.1109/TE.2021.3127215
https://doi.org/10.28945/4767
https://doi.org/10.5334/2005-8
https://doi.org/10.3991/ijet.v15i09.12437
https://doi.org/10.1109/TPWRS.2003.821004

84

Hajdin, G., Vukovac, D. P., & Oreski, D. (2022). Redefining the e-schools concept of teaching

scenarios for interdisciplinary topics. In EDULEARN22 Proceedings (pp. 5534-5542).

IATED.

Hajdin, G., Hainš, V. V., & Oreški, D. (2018). The impact of teaching scenarios on student

perception of teaching. In EDULEARN18 Proceedings (pp. 3305-3313). IATED.

Hendrik, H., & Hamzah, A. (2020). Flipped Classroom In Programming Course: A Systematic

Literature Review. International Journal of Emerging Technologies in Learning, 16(2),

220–236. https://doi.org/10.3991/ijet.v16i02.15229

Hundhausen, C. D., Agrawal, A., & Agarwal, P. (2013). Talking about code: Integrating

pedagogical code reviews into early computing courses. ACM Transactions on

Computing Education, 13(3). https://doi.org/10.1145/2499947.2499951

IO2. Learning design models. (n.d.). TEACH4EDU4. Retrieved May 3, 2023, from

https://teach4edu4-project.eu/en/intellectual-outputs/learning-design-models

Jawad, H. M., & Tout, S. (2021). Gamifying computer science education for z generation.

Information (Switzerland), 12(11), 1–18. https://doi.org/10.3390/info12110453

Jenki, G. L., & Ademoye, O. (2011). Can individual code reviews improve solo programming

on an introductory course? ITALICS Innovations in Teaching and Learning in Information

and Computer Sciences, 11(1), 71–79. https://doi.org/10.11120/ital.2012.11010071

Jerbić-Zorc, G. et al. (2021). Priručnik za primjenu i izradu e-Škole scenarija poučavanja.

Hrvatska akademska i istraživačka mreža CARNET. Available at: https://edutorij.e-

skole.hr/share/page/document-details?nodeRef=workspace://SpacesStore/b2c5cb3a-

025a-4e2b-bbcb-6148613adab1

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., … Szabo, C.

(2018). Introductory programming: A systematic literature review. In Annual Conference

on Innovation and Technology in Computer Science Education, ITiCSE.

https://doi.org/10.1145/3293881.3295779

Medeiros, R. P., Ramalho, G. L., & Falcao, T. P. (2019). A Systematic Literature Review on

Teaching and Learning Introductory Programming in Higher Education. IEEE

Transactions on Education, 62(2), 77–90. https://doi.org/10.1109/TE.2018.2864133

Perugini, S. (2019). Emerging languages: An alternative approach to teaching programming

languages. Journal of Functional Programming, 1–13.

https://doi.org/10.1017/S095679681900011X

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory

programming: A literature review. ACM Transactions on Computing Education, 18(1),

1–24. https://doi.org/10.1145/3077618

Silva, L., Mendes, A. J., & Gomes, A. (2020). Computer-supported collaborative learning in

programming education: A systematic literature review. IEEE Global Engineering

https://doi.org/10.3991/ijet.v16i02.15229
https://doi.org/10.1145/2499947.2499951
https://teach4edu4-project.eu/en/intellectual-outputs/learning-design-models
https://doi.org/10.3390/info12110453
https://doi.org/10.11120/ital.2012.11010071
https://edutorij.e-skole.hr/share/page/document-details?nodeRef=workspace://SpacesStore/b2c5cb3a-025a-4e2b-bbcb-6148613adab1
https://edutorij.e-skole.hr/share/page/document-details?nodeRef=workspace://SpacesStore/b2c5cb3a-025a-4e2b-bbcb-6148613adab1
https://edutorij.e-skole.hr/share/page/document-details?nodeRef=workspace://SpacesStore/b2c5cb3a-025a-4e2b-bbcb-6148613adab1
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1017/S095679681900011X
https://doi.org/10.1145/3077618

85

Education Conference, EDUCON, 2020-April, 1086–1095.

https://doi.org/10.1109/EDUCON45650.2020.9125237

Sharpe, R., Beetham, H., & De Freitas, S. (2010). Rethinking learning for a digital age: How

learners are shaping their own experiences. Routledge.

Yulianto, B., Prabowo, H., & Meyliana. (2017). Effective digital contents for computer

programming learning: A systematic literature review. Advanced Science Letters, 23(5),

4733–4737. https://doi.org/10.1166/asl.2017.8877

https://doi.org/10.1109/EDUCON45650.2020.9125237
https://doi.org/10.1166/asl.2017.8877

