

CURRENT STATE OF PROGRAMMING IN
PROJECT PARTNERS' HIGH SCHOOLS AND

UNIVERSITIES - HORIZONTAL ANALYSIS

1

Project Object Oriented Programming for Fun

Project acronym OOP4FUN

Agreement number 2021-1-SK01-KA220-SCH-00027903

Project coordinator Žilinska univerzita v Žiline (Slovakia)

Project partners Sveučilište u Zagrebu (Croatia)

 Srednja škola Ivanec (Croatia)

 Univerzita Pardubice (Czech Republic)

 Gymnazium Pardubice (Czech Republic)

 Obchodna akademia Povazska Bystrica (Slovakia)

 Hochschule fuer Technik und Wirtschaft Dresden (Germany)

 Gymnasium Dresden-Plauen (Germany)

 Univerzitet u Beogradu (Serbia)

 Gimnazija Ivanjica (Serbia)

Year of publication 2022

2

Table of contents

1. Horizontal analysis of universities’ data .. 8

1.1. Analysis of OOP load ... 8

1.1.1. FOI ... 12

1.1.2. UNIZA ... 16

1.1.3. UPCE .. 19

1.1.4. FON .. 22

1.1.5. HTW ... 24

1.1.6. Summary .. 27

1.2. Analysis of prior requirements of universities’ OOP related courses 30

1.2.1. OOP teaching courses .. 31

1.2.1.1. FOI.. 31

1.2.1.2. HTW ... 32

1.2.1.3. FON .. 33

1.2.1.4. UNIZA ... 33

1.2.1.5. UPCE .. 35

1.2.1.6. Prior requirements matrix ... 39

1.2.2. OOP practicing courses .. 41

1.2.2.1. FOI.. 42

1.2.2.2. HTW ... 44

1.2.2.3. FON .. 45

1.2.2.4. UNIZA ... 45

1.2.2.5. UPCE .. 48

1.2.2.6. Prior requirements matrix ... 48

1.2.3. OOP using courses ... 50

1.2.3.1. FOI.. 51

1.2.3.2. HTW ... 52

1.2.3.3. FON .. 52

1.2.3.4. UNIZA ... 53

1.2.3.5. UPCE .. 53

1.2.3.6. Prior requirements matrix ... 53

1.2.4. Conclusion ... 55

1.3. Analysis of approaches for teaching OOP ... 59

1.3.1. Remarks on gathered data .. 59

3

1.3.2. Identified themes .. 59

1.3.2.1. Forms of instruction / forms of knowledge transfer ... 59

1.3.2.2. Individual work .. 60

1.3.2.3. Assessment .. 61

1.3.2.4. Tools .. 62

1.3.3. Conclusion ... 64

2. Horizontal analysis of high schools’ data .. 65

2.1. Analysis of OOP load ... 66

2.2. Analysis of learning outcomes and topics and their comparison for universities and high

schools ... 69

2.2.1. Analysis and comparison ... 69

2.2.2. Conclusion ... 78

2.2.3. ‘Light OOP’ topics .. 79

2.3. Analysis of teaching methods, types of activities, assessments and team work experience 79

2.3.1. Teaching methods ... 79

2.3.2. Types of activities .. 81

2.3.3. Assessments .. 82

2.3.4. Teamwork experience ... 83

2.4. Analysis of literature and teaching materials .. 84

2.5. Analysis of suggestions on how to improve OOP teaching in schools 86

2.6. Additional comments .. 87

2.7. Review of additional subjects related to programming in general 88

Bibliography ... 91

4

List of tables

Table 1 - University courses categorization .. 10

Table 2 - Total OOP teaching/related/unrelated hours per mandatory and optinal subjects of 1st year

of study on FOI .. 12

Table 3 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 1st year of study on FOI .. 12

Table 4 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd

year of study on FOI .. 13

Table 5 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 2nd year of study on FOI ... 13

Table 6 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 3rd year

of study on FOI .. 14

Table 7 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 3rd year of study on FOI .. 14

Table 8 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 1st year

of study on UNIZA ... 16

Table 9 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 1st year of study on UNIZA ... 16

Table 10 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd

year of study on UNIZA ... 17

Table 11 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 2nd year of study on UNIZA .. 17

Table 12 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 1st

year of study on UPCE ... 19

Table 13 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 1st year of study on UPCE ... 19

Table 14 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd

year of study on UPCE ... 20

Table 15 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 2nd year of study on UPCE .. 20

Table 16 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd

year of study on FON ... 22

Table 17 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 2nd year of study on FON ... 22

Table 18 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 1st

year of study on HTW .. 24

Table 19 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 1st year of study on HTW .. 24

Table 20 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd

year of study on HTW .. 25

Table 21 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects

of 2nd year of study on HTW .. 25

Table 22 - OOP teaching courses considered in the prior requirements analysis 31

Table 23 - Prior requirements analysis of course Object-oriented programming on FOI 32

Table 24 - Prior requirements analysis of course Programming II on HTW .. 32

5

Table 25 - Prior requirements analysis of course Programming 2 on FON ... 33

Table 26 - Prior requirements analysis of course Informatics 1 on UNIZA ... 33

Table 27 - Prior requirements analysis of course Practice of programming 1 on UNIZA 34

Table 28 - Prior requirements analysis of course Informatics 2 on UNIZA ... 34

Table 29 - Prior requirements analysis of course Practice of programming 2 on UNIZA 34

Table 30 - Prior requirements analysis of course Basics of Algorithmization on UPCE 35

Table 31 - Prior requirements analysis of course Algorithmization and programming practicum on UPCE

 ... 35

Table 32 - Prior requirements analysis of course Basics of Programming Using Java Programming

Language on UPCE ... 36

Table 33 - Prior requirements analysis of course Object Oriented Programming on UPCE 37

Table 34 - Prior requirements analysis of course Language C++ I on UPCE .. 38

Table 35 - Prior requirements analysis of course The C# Programming Language on UPCE 39

Table 36 - Prior requirements matrix of OOP teaching courses ... 40

Table 37 - Distribution of requirements of OOP teaching courses ... 41

Table 38 - OOP practicing courses considered in the prior requirements analysis 41

Table 39 - Prior requirements analysis of course Windows Applications Development on FOI 42

Table 40 - Prior requirements analysis of course Programming 2on FOI ... 43

Table 41 - Prior requirements analysis of course Mobile applications and games development on FOI

 ... 44

Table 42 - Prior requirements analysis of course Software Engineering 2 on HTW 45

Table 43 - Prior requirements analysis of course Programming of component architectures on HTW 45

Table 44 - Prior requirements analysis of course Informatics 3 on UNIZA ... 46

Table 45 - Prior requirements analysis of course Algorithms and Data structures 1 on UNIZA 47

Table 46 - Prior requirements analysis of course Data Structures on UPCE ... 48

Table 47 - Prior requirements matrix of OOP practicing courses ... 49

Table 48 - Distribution of requirements of OOP practicing courses ... 50

Table 49 - OOP using courses considered in the prior requirements analysis 51

Table 50 - Prior requirements analysis of course Programming in Python on FOI 51

Table 51 - Prior requirements analysis of course Programming I on HTW ... 52

Table 52 - Prior requirements analysis of course Programming distributed systems on HTW 52

Table 53 - Prior requirements analysis of course Data structures and algorithms on FON 53

Table 54 - Prior requirements matrix of OOP using courses ... 54

Table 55 - Distribution of requirements of OOP using courses ... 55

Table 56 - Distribution of requirements of all OOP courses ... 56

Table 57 - Suggested or mandated IDEs per programming language ... 63

Table 58 - Basic data of OOP related subjects .. 67

Table 59 - Literature and other materials used in OOP subjects .. 85

Table 60 - Problems that teachers are facing with and suggestions for improvement the quality of

classes .. 86

Table 61 - Other IT subjects taught in partner institutions ... 88

6

List of charts

Chart 1 - Hierarchy of OOP course categories ... 9

Chart 2 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 1st year of study on FOI .. 12

Chart 3 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 2nd year of study on FOI .. 13

Chart 4 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 3rd year of study on FOI ... 14

Chart 5 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on FOI

 ... 15

Chart 6 - Total OOP teaching/practicing/using hours distribution between 3 years of study on FOI of

courses teaching OOP ... 15

Chart 7 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 1st year of study on UNIZA ... 16

Chart 8 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 2nd year of study on UNIZA .. 17

Chart 9 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on UNIZA

 ... 18

Chart 10 - Total OOP teaching/practicing/using hours distribution between 3 years of study on UNIZA

of courses teaching OOP ... 18

Chart 11 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 1st year of study on UPCE... 19

Chart 12 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 2nd year of study on UPCE ... 20

Chart 13 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on UPCE

 ... 21

Chart 14 - Total OOP teaching/practicing/using hours distribution between 3 years of study on UPCE

of courses teaching OOP ... 21

Chart 15 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 2nd year of study on FON ... 22

Chart 16 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on FON

 ... 23

Chart 17 - Total OOP teaching/practicing/using hours distribution between 3 years of study on FON of

courses teaching OOP ... 23

Chart 18 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 1st year of study on HTW ... 24

Chart 19 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and

optional subjects of 2nd year of study on HTW .. 25

Chart 20 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on HTW

 ... 26

Chart 21 - Total OOP teaching/practicing/using hours distribution between 3 years of study on HTW of

courses teaching OOP ... 26

Chart 22 - Comparison of total hours of teaching OOP of mandatory courses between all universities

in every year .. 27

7

Chart 23 - Comparison of total hours related to OOP of mandatory courses between all universities in

every year .. 27

Chart 24 - Comparison of total hours of teaching OOP of optional courses between all universities in

every year .. 28

Chart 25 - Comparison of total hours related to OOP of optional courses between all universities in

every year .. 28

Chart 26 - Comparison of total hours of teaching OOP of OOP teaching courses between all universities

in every year .. 29

Chart 27 - Comparison of total hours of teaching OOP of OOP practicing courses between all

universities in every year ... 29

Chart 28 - Forms of knowledge transfer used in lectures ... 59

Chart 29 - Learning-by-doing approach in laboratory exercises ... 60

Chart 30 - Frequency of assessment methods for theoretical knowledge .. 61

Chart 31 - Type of knowledge assessed in analyzed courses .. 62

Chart 32 - Programming language occurence in analyzed courses ... 62

Chart 33 - Most frequently used IDEs in analyzed courses ... 64

Chart 34 - High schools and numbers of OOP related subjects ... 66

Chart 35 - Categorisation of subjects and their number per category ... 68

Chart 36 - Distribution of hours per subject dedicated to OOP contents .. 68

Chart 37 – Number of universities teaching each topic .. 70

Chart 38 – Number of high schools teaching each topic... 71

Chart 39 – Topics analysis in Czech Republic .. 72

Chart 40 – Topics analysis in Slovakia ... 73

Chart 41 – Topics analysis in Germany .. 74

Chart 42 – Topics analysis in Croatia ... 76

Chart 43 – Topics analysis in Serbia .. 77

Chart 44 - Representation of teaching methods used in high school subjects 80

Chart 45 - The presence of students' teamwork in high school OOP subjects 84

8

1. Horizontal analysis of universities’ data

To analyze gap in teaching of (object oriented) programming between high schools and universities

firstly we have done analysis of the way of teaching of programming on universities. All partners

identified relevant subjects related to teaching OOP in the bachelor studies and we performed

horizontal analysis of these data. The methodology used to collect and analyze data was as follows:

1. Partners from universities identified subjects related to teaching of OOP. For every subject we

collected these data (collected data are enclosed in attachment):

a. Type of subject (mandatory/optional).

b. Year of study.

c. Total hours.

d. Hours of teaching OOP.

e. Hours of teaching topics related to OOP.

f. Prior knowledge required to attend the subject.

g. Prior skills required to attend the subject.

h. Learning outcomes.

i. Topics.

j. Description of teaching methods.

k. Type of activities (investigation, discussion, practical work, production, data

acquisition, etc.).

l. Use of technology.

2. Review of the data was performed. Partners from universities reviewed and discussed data

entered from other partners in order to resolve inequalities.

3. The analysis of data was performed. We divided it into four areas:

a. Analysis of OOP load. We focused on the year of study and hour dotation of every

subject and categorized the subjects. Relevant subjects were filtered out for the other

stages of analysis.

b. Analysis of prior knowledge and prior skills. We compared these prerequisites to the

current teaching practice of OOP.

c. Analysis of learning outcomes. We identified outcomes and competencies that could

be moved to high schools’ syllabus.

d. Analysis of methodologies used to teach OOP in universities.

1.1. Analysis of OOP load

The very first analysis of collected data was focused on identification of relevant subjects for latter

parts of this analysis. Every partner was obliged to analyze relevant courses. This populated set 𝑆 of

subjects taken into consideration. In this part we focused on following data for every subject 𝜎 ∈ 𝑆:

a. Type of subject (mandatory/optional): T𝜎 ∈ {𝑀, 𝑂}

b. Year of study: y𝜎 ∈ {1,2,3}

c. Total hours: 𝑇𝐻𝜎
.

d. Total hours of teaching OOP: 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

e. Total hours of teaching topics related to OOP: 𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑

9

In order to perform the analysis we computed:

f. Relative hours of teaching OOP: 𝑅𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

=
𝑇𝐻𝜎

𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

𝑇𝐻𝜎
.

g. Relative hours of teaching topics related to OOP: 𝑅𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑 =

𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑇𝐻𝜎
.

h. Total hors of teaching topics unrelated to OOP:

𝑇𝐻𝜎
𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 = 𝑇𝐻𝜎

. − 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

− 𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑

i. Relative hours of teaching topics unrelated to OOP: 𝑅𝐻𝜎
𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 =

𝑇𝐻𝜎
𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑

𝑇𝐻𝜎
.

To identify relevant courses we proposed three categories:

1. OOP teaching course: Courses in this category are primarily focused on teaching new

concepts. These courses are oriented both on theoretical knowledge as well as on practical

skills in using of these concepts. The criterion for the course to fall into this category is to teach

topics directly related to the OOP at least in half of the hours:

𝑐𝑟𝑖𝑡𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

= 𝑅𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

≥ 0.5.

2. OOP practicing course: Courses in this category are primarily focused on practical

understanding of OOP concepts. These courses are not focused on teaching theoretical

background – typically they rely on knowledge previously learned in courses from OOP

teaching category and teach brand new concepts in smaller number of hours. The focus is

placed on understanding of practical usage of the OOP in different scenarios. The criterion for

the course to fall into this category is not to be an OOP teaching course and to teach topics

related to the OOP at least in third of the hours:

𝑐𝑟𝑖𝑡𝜎
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑖𝑛𝑔

= ¬𝑐𝑟𝑖𝑡𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

∧ 𝑅𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

+ 𝑅𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑 ≥ 0.3.

3. OOP using course: Courses in this category are not focused on teaching OOP however are

strongly dependent on understanding of OOP. These are typically courses focused on some

technology/programming language. If new OOP concepts are discussed, these are typically

strongly specific for used technology/programming language and may not be applicable in

other technologies/programming languages. The criterion for the course to fit in this category

is not to fit in any of previous two categories:

𝑐𝑟𝑖𝑡𝜎
𝑢𝑠𝑖𝑛𝑔

= ¬𝑐𝑟𝑖𝑡𝜎
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑖𝑛𝑔

.

Note that fitting any course into forementioned categories does not mean, that the course itself its

curriculum does not belong or is in opposition to the other two categories. We point out that any OOP

teaching course can fit OOP practicing (without proper practice it is not possible to cover new topics)

as well as OOP using (one has to use specific language with its specifics to learn it) category, however

this does not work vice versa (OOP using course is not OOP teaching). In the following picture we define

the hierarchy of the categories based on the areas that must be covered in respective lectures.

using

practicing

teaching

Chart 1 - Hierarchy of OOP course categories

Categorization of all courses is presented in Table 1.

10

Table 1 - University courses categorization

University Subject name
Type of
subject

Year

Hours

Category
Total

Teaching OOP Related to OOP

Total Relative Total Relative

FOI Object-oriented programming Mandatory 1 60 60 100% 0 0% OOP Teaching

FOI Windows Applications Development Optional 2 60 10 17% 24 40% OOP Practising

FOI Programming in Python Optional 3 30 6 20% 2 7% OOP Using

FOI Programming 2 Mandatory 1 60 20 33% 10 17% OOP Practising

FOI Mobile applications and games development Mandatory 3 60 0 0% 43 72% OOP Practising

HTW Programming I Mandatory 1 75 0 0% 6 8% OOP Using

HTW Programming II Mandatory 1 60 50 83% 10 17% OOP Teaching

HTW Software Engineering 2 Mandatory 2 60 30 50% 30 50% OOP Practising

HTW Programming distributed systems Optional 2 60 0 0% 10 17% OOP Using

HTW Programming of component architectures Optional 2 60 10 17% 20 33% OOP Practising

FON Programming 2 Mandatory 2 52 48 92% 4 8% OOP Teaching

FON Data structures and algorithms Mandatory 2 52 8 15% 6 12% OOP Using

UNIZA Informatics 1 Mandatory 1 65 60 92% 0 0% OOP Teaching

UNIZA Informatics 2 Mandatory 1 65 45 69% 0 0% OOP Teaching

UNIZA Practice of programming 1 Optional 1 26 20 77% 0 0% OOP Teaching

UNIZA Practice of programming 2 Optional 1 26 20 77% 0 0% OOP Teaching

UNIZA Informatics 3 Mandatory 2 65 15 23% 40 62% OOP Practising

UNIZA Algorithms and Data structures 1 Mandatory 2 52 13 25% 13 25% OOP Practising

UPCE Basics of Algorithmization Mandatory 1 26 22 85% 4 15% OOP Teaching

UPCE Algorithmization and programming practicum Mandatory 1 26 24 92% 2 8% OOP Teaching

UPCE Basics of Programming Using Java Programming Language Mandatory 1 52 52 100% 0 0% OOP Teaching

UPCE Object Oriented Programming Mandatory 2 65 65 100% 0 0% OOP Teaching

UPCE Data Structures Mandatory 2 52 26 50% 26 50% OOP Practising

UPCE Language C++ I Mandatory 2 52 52 100% 0 0% OOP Teaching

UPCE The C# Programming Language Mandatory 2 52 52 100% 0 0% OOP Teaching

11

Despite the necessity of courses from category OOP using on universities, we decided to filter them

out and do the analysis taking into consideration only OOP teaching and OOP practicing courses, since

these are focused on teaching the OOP concepts.

In order to identify the load of OOP in respective years, firstly the separate analysis of respective

universities’ courses was performed. If the load of the OOP will be high in the first years, that will

support the assumption that universities invest a big amount of teaching hours to teach OOP from the

beginning of studies. In the following charts and tables, we show data processed of every university as

follows:

1. For every year of study, we present:

a. Tables showing both total (TH) and related (RH) hours of teaching OOP, related to OOP

and non related to OOP for both course types (mandatory and optional). These tables

provide a data for following chart.

b. Charts of RH of teaching OOP, related to OOP and non related to OOP. One can see the

distribution of hours between subjects focused on OOP. One can see that hierarchy of

courses is copied – in the first year of studies, the courses from the bottom of the hierarchy

are present, latter the top courses are present.

c. Tables showing both total (TH) and related (RH) hours of teaching OOP, related to OOP

and non related to OOP for defined course categories (OOP teaching, OOP practicing and

OOP using).

2. In the overall analysis of all years of study, we present:

a. Chart of TH (teaching, related and unrelated) in every year of study (see sum row of

respective tables as described in 1a). One can see total number of hours devoted to

subjects focused on OOP. This justify the assumption about the focus of universities on

OOP in first years of study.

b. Chart of 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

 in every year of study distributed among course categories (see OOP

teaching row of respective tables as described in 1c). One can observe the focus of OOP

teaching subjects in different years of study. Note the significant number of OOP teaching

courses in the first year of study.

12

1.1.1. FOI

The informatics related study program at FOI places courses that are relevant to OOP in all three years
of study. Tables Table 2 and Table 3 summarize 1st year of study, Table 4 and

Table 5 summarize 2nd year of study Table 6 and Table 7 summarize 3rd year of study. Visualization of

relative distributions of hours in respective years of study are presented in Chart 2, Chart 3 and Chart

4. Overall analysis of relevant FOI courses is presented in charts Chart 5 and Chart 6.

1st year of study

Table 2 - Total OOP teaching/related/unrelated hours per mandatory and optinal subjects of 1st year of study on FOI

 Hours per year
 1

Course
type

Σ Course total

Teaching OOP Related to OOP
Unrelated to

OOP

Σ % Σ % Σ %

Mandatory 120 80 66,66667 10 8,333333 30 25

Optional 0 0 0 0 0 0 0

Σ 120 80 10 30

Chart 2 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 1st
year of study on FOI

Table 3 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 1st year of study
on FOI

 Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP
 Σ % Σ % Σ %

OOP
Teaching OOP Teaching 60 60 100 0 0 0 0
OOP
Practising

OOP
Practising 60 20 33,33333 10 16,66667 30 50

OOP Using OOP Using 0 0 0 0 0 0 0
 Σ 120 80 10 30

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 1st year courses

Teaching OOP Related to OOP Unrelated to OOP

13

2nd year of study

Table 4 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd year of study on FOI

 Hours per year

 2

Course type

Σ Course total
Teaching OOP

Related to
OOP

Unrelated to OOP

 Σ % Σ % Σ %

Mandatory 0 0 0 0 0 0 0

Optional 60 10 16,66667 24 40 26 43,33333

Σ 60 10 24 26

Chart 3 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 2nd
year of study on FOI

Table 5 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 2nd year of study
on FOI

Hours per year

2

Course
category

Σ Course total
Teaching OOP

Related to
OOP

Unrelated to OOP

Σ % Σ % Σ %

OOP
Teaching 0 0 0 0 0 0 0

OOP
Practising 60 10 16,66667 24 40 26 43,33333

OOP Using 0 0 0 0 0 0 0

Σ 60 10 24 26

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 2nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

14

3rd year of study

Table 6 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 3rd year of study on FOI

 Hours per year

 3

Course type Σ Course total

Teaching
OOP

Related to OOP Unrelated to OOP

Σ % Σ % Σ %

Mandatory 60 0 0 43 71,66667 17 28,33333

Optional 30 6 20 2 6,666667 22 73,33333

Σ 90 6 45 39

Chart 4 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 3rd
year of study on FOI

Table 7 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 3rd year of study
on FOI

Hours per year

3

Course
category

Σ Course total

Teaching
OOP

Related to OOP Unrelated to OOP

Σ % Σ % Σ %

OOP
Teaching 0 0 0 0 0 0 0

OOP
Practising 60 0 0 43 71,66667 17 28,33333

OOP Using 30 6 20 2 6,666667 22 73,33333

Σ 90 6 45 39

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 3nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

15

Overall

Chart 5 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on FOI

Chart 6 - Total OOP teaching/practicing/using hours distribution between 3 years of study on FOI of courses teaching OOP

0

20

40

60

80

100

120

140

1 2 3

To
ta

l h
o

u
rs

Year of study

Total hours distribution of OOP courses in years

Unrelated to OOP

Related to OOP

Teaching OOP

0

10

20

30

40

50

60

70

80

90

1 2 3

To
ta

l h
o

u
rs

Year of study

Total OOP teaching hours distribution in course categories

OOP Using

OOP Practising

OOP Teaching

16

1.1.2. UNIZA

The informatics related study program at UNIZA places courses that are relevant to OOP in first two
years of study. Tables Table 8 and Table 9 summarize 1st year of study, Table 10 and Table 11Table 4 and

Table 5 summarize 2nd year of study. Visualization of relative distributions of hours in respective years

of study are presented in Chart 7 and Chart 8. Overall analysis of relevant UNIZA courses is presented

in charts Chart 9 and Chart 10.

1st year of study

Table 8 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 1st year of study on UNIZA

 Hours per year
 1

Course
type

Σ Course total

Teaching OOP
Related to

OOP
Unrelated to OOP

Σ % Σ % Σ %

Mandatory 130 105 80,76923 0 0 25 19,23077

Optional 52 40 76,92308 0 0 12 23,07692

Σ 182 145 0 37

Chart 7 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 1st
year of study on UNIZA

Table 9 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 1st year of study on
UNIZA

 Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP
 Σ % Σ % Σ %

OOP
Teaching OOP Teaching 182 145 79,67033 0 0 37 20,32967
OOP
Practising

OOP
Practising 0 0 0 0 0 0 0

OOP Using OOP Using 0 0 0 0 0 0 0
 Σ 182 145 0 37

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 1st year courses

Teaching OOP Related to OOP Unrelated to OOP

17

2nd year of study

Table 10 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd year of study on UNIZA

 Hours per year

 2

Course type
Σ Course

total

Teaching OOP Related to OOP Unrelated to OOP

Σ % Σ % Σ %

Mandatory 117 28 23,93162 53 45,29915 36 30,76923

Optional 0 0 0 0 0 0 0,00000

Σ 117 28 53 36

Chart 8 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 2nd
year of study on UNIZA

Table 11 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 2nd year of study
on UNIZA

Hours per year

2

Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP

Σ % Σ % Σ %

OOP Teaching 0 0 0 0 0 0 0
OOP

Practising 117 28 23,93162 53 45,29915 36 30,76923

OOP Using 0 0 0 0 0 0 0

Σ 117 28 53 36

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 2nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

18

Overall

Chart 9 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on UNIZA

Chart 10 - Total OOP teaching/practicing/using hours distribution between 3 years of study on UNIZA of courses teaching
OOP

0

20

40

60

80

100

120

140

160

180

200

1 2 3

To
ta

l h
o

u
rs

Year of study

Total hours distribution of OOP courses in years

Unrelated to OOP

Related to OOP

Teaching OOP

0

20

40

60

80

100

120

140

160

1 2 3

To
ta

l h
o

u
rs

Year of study

Total OOP teaching hours distribution in course categories

OOP Using

OOP Practising

OOP Teaching

19

1.1.3. UPCE

The informatics related study program at UPCE places courses that are relevant to OOP in first two

years of study. Tables Table 12 and Table 13 summarize 1st year of study, Table 14 and Table 15Table

4 summarize 2nd year of study. Visualization of relative distributions of hours in respective years of

study are presented in Chart 11 and Chart 12. Overall analysis of relevant UPCE courses is presented

in charts Chart 13 and Chart 14.

1st year of study

Table 12 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 1st year of study on UPCE

 Hours per year
 1

Course
type

Σ Course total

Teaching OOP Related to OOP
Unrelated to

OOP

Σ % Σ % Σ %

Mandator
y 104 98 94,23077 6 5,769231 0 0

Optional 0 0 0 0 0 0 0

Σ 104 98 6 0

Chart 11 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 1st
year of study on UPCE

Table 13 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 1st year of study
on UPCE

 Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP
 Σ % Σ % Σ %

OOP
Teaching OOP Teaching 104 98 94,23077 6 5,769231 0 0
OOP
Practising

OOP
Practising 0 0 0 0 0 0 0

OOP Using OOP Using 0 0 0 0 0 0 0
 Σ 104 98 6 0

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 1st year
courses

Teaching OOP Related to OOP Unrelated to OOP

20

2nd year of study

Table 14 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd year of study on UPCE

 Hours per year

 2

Course type
Σ Course

total

Teaching OOP Related to OOP
Unrelated to

OOP

Σ % Σ % Σ %

Mandatory 221 195 88,23529 26 11,76471 0 0

Optional 0 0 0 0 0 0 0,00000

Σ 221 195 26 0

Chart 12 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 2nd
year of study on UPCE

Table 15 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 2nd year of study
on UPCE

Hours per year

2

Course
category

Σ Course total
Teaching OOP

Related to
OOP

Unrelated to
OOP

Σ % Σ % Σ %

OOP
Teaching 169 169 100 0 0 0 0

OOP
Practising 52 26 50 26 50 0 0

OOP Using 0 0 0 0 0 0 0

Σ 221 195 26 0

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 2nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

21

Overall

Chart 13 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on UPCE

Chart 14 - Total OOP teaching/practicing/using hours distribution between 3 years of study on UPCE of courses teaching
OOP

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

Total hours distribution of OOP courses in years

Unrelated to OOP

Related to OOP

Teaching OOP

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

Total OOP teaching hours distribution in course categories

OOP Using

OOP Practising

OOP Teaching

22

1.1.4. FON

The informatics related study program at FON places courses that are relevant to OOP in 2nd year of

study. Table 16 and Table 17 summarize data. Visualization of relative distributions of hours in 2nd year

of study is presented in Chart 15. Overall analysis of relevant FON courses is presented in charts Chart

16 and Chart 17.

2nd year of study

Table 16 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd year of study on FON

 Hours per year

 2

Course type
Σ Course

total

Teaching OOP Related to OOP Unrelated to OOP

Σ % Σ % Σ %

Mandatory 104 56 53,84615 10 9,615385 38 36,53846

Optional 0 0 0 0 0 0 0,00000

Σ 104 56 10 38

Chart 15 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 2nd
year of study on FON

Table 17 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 2nd year of study
on FON

Hours per year

2

Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP

Σ % Σ % Σ %

OOP Teaching 52 48 92,30769 4 7,692308 0 0
OOP

Practising 0 0 0 0 0 0 0

OOP Using 52 8 15,38462 6 11,53846 38 73,07692

Σ 104 56 10 38

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 2nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

23

Overall

Chart 16 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on FON

Chart 17 - Total OOP teaching/practicing/using hours distribution between 3 years of study on FON of courses teaching OOP

0

20

40

60

80

100

120

1 2 3

To
ta

l h
o

u
rs

Year of study

Total hours distribution of OOP courses in years

Unrelated to OOP

Related to OOP

Teaching OOP

0

10

20

30

40

50

60

1 2 3

To
ta

l h
o

u
rs

Year of study

Total OOP teaching hours distribution in course categories

OOP Using

OOP Practising

OOP Teaching

24

1.1.5. HTW

The informatics related study program at HTW places courses that are relevant to OOP in first two

years of study. Tables Table 18 and Table 19 summarize 1st year of study, Table 20 and Table 21

summarize 2nd year of study. Visualization of relative distributions of hours in respective years of study

are presented in Chart 18 and Chart 19. Overall analysis of relevant UPCE courses is presented in charts

Chart 20 and Chart 21.

1st year of study

Table 18 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 1st year of study on HTW

 Hours per year
 1

Course type
Σ Course total

Teaching OOP Related to OOP Unrelated to OOP

Σ % Σ % Σ %

Mandatory 135 50 37,03704 16 11,85185 69 51,11111

Optional 0 0 0 0 0 0 0

Σ 135 50 16 69

Chart 18 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 1st
year of study on HTW

Table 19 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 1st year of study
on HTW

Hours per year

1

Course
category

Σ Course total

Teaching OOP Related to OOP
Unrelated to

OOP

Σ % Σ % Σ %

OOP
Teaching 60 50 83,33333 10 16,66667 0 0

OOP
Practising 0 0 0 0 0 0 0

OOP Using 75 0 0 6 8 69 92

Σ 135 50 16 69

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 1st year courses

Teaching OOP Related to OOP Unrelated to OOP

25

2nd year of study

Table 20 - Total OOP teaching/related/unrelated hours per mandatory and optional subjects of 2nd year of study on HTW

 Hours per year

 2

Course type Σ Course total
Teaching OOP

Related to
OOP

Unrelated to OOP

Σ % Σ % Σ %

Mandatory 60 30 50 30 50 0 0

Optional 120 10 8,333333 30 25 80 66,66667

Σ 180 40 60 80

Chart 19 - Relative distribution of OOP teaching/related/unrelated hours between mandatory and optional subjects of 2nd
year of study on HTW

Table 21 - Total OOP teaching/related/unrelated hours per OOP teaching/practicing and using subjects of 2nd year of study
on HTW

Hours per year

2

Course
category

Σ Course
total

Teaching OOP Related to OOP Unrelated to OOP

Σ % Σ % Σ %

OOP Teaching 0 0 0 0 0 0 0
OOP

Practising 120 40 33,33333 50 41,66667 30 25

OOP Using 60 0 0 10 16,66667 50 83,33333

Σ 180 40 60 80

0%

20%

40%

60%

80%

100%

Mandatory Obligatory

Relative hours of OOP in 2nd year
courses

Teaching OOP Related to OOP Unrelated to OOP

26

Overall

Chart 20 - Total OOP teaching/related/unrelated hours distribution between 3 years of study on HTW

Chart 21 - Total OOP teaching/practicing/using hours distribution between 3 years of study on HTW of courses teaching OOP

0

20

40

60

80

100

120

140

160

180

200

1 2 3

To
ta

l h
o

u
rs

Year of study

Total hours distribution of OOP courses in years

Unrelated to OOP

Related to OOP

Teaching OOP

0

10

20

30

40

50

60

1 2 3

To
ta

l h
o

u
rs

Year of study

Total OOP teaching hours distribution in course categories

OOP Using

OOP Practising

OOP Teaching

27

1.1.6. Summary

In order to summarize all data we performed last comparative analysis. First we compared sum of

values 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

 and 𝑇𝐻𝜎
𝑟𝑒𝑙𝑎𝑡𝑒𝑑 of both mandatory and optional courses. These charts are depicted

below:

Chart 22 - Comparison of total hours of teaching OOP of mandatory courses between all universities in every year

Chart 23 - Comparison of total hours related to OOP of mandatory courses between all universities in every year

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

Mandatory hours of courses teaching OOP per year

FOI

UNIZA

UPCE

FON

HTW

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

Mandatory hours of courses related to OOP per year

FOI

UNIZA

UPCE

FON

HTW

28

Chart 24 - Comparison of total hours of teaching OOP of optional courses between all universities in every year

Chart 25 - Comparison of total hours related to OOP of optional courses between all universities in every year

We can conclude that FOI, UNIZA, UPCE and HTW invest in the first year of study significant number of

hours in mandatory subject to teach OOP. In the second year, the teaching of OOP is supported with

the subjects related to OOP. Different approach can be observed in FON, that starts teaching of OOP

in the second year of study. Regarding to UPCE, the OOP topics have a significant number of hours also

in second year of study. According to data, we can conclude that every university starts teaching OOP

in the beginning of bachelor’s study. If suitable OOP background would be covered in high schools:

a) students will not have to change the way of thinking between procedural and object oriented

programming.

b) universities may focus on more advanced concepts of OOP, what may lead to better

understanding of such concepts from students.

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

Optional hours of courses teaching OOP per year

FOI

UNIZA

UPCE

FON

HTW

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

Optional hours of courses related to OOP per year

FOI

UNIZA

UPCE

FON

HTW

29

As a second comparative analysis we compared sum of values 𝑇𝐻𝜎
𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

 of OOP teaching and OOP

practicing categories. For this analysis only the hours of teaching OOP were considered since these are

where the basics of OOP are covered. Respective charts are depicted below:

Chart 26 - Comparison of total hours of teaching OOP of OOP teaching courses between all universities in every year

Chart 27 - Comparison of total hours of teaching OOP of OOP practicing courses between all universities in every year

From this analysis we may conclude that following proposed categorization the first years of study are

dedicated to the fundamentals of OOP, while later years of study are more practical oriented. This

supports the conclusion from first comparative analysis, that universities invest significant number of

hours in the first OOP oriented courses.

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

OOP teaching hours of "OOP teaching" courses per
year

FOI

UNIZA

UPCE

FON

HTW

0

50

100

150

200

250

1 2 3

To
ta

l h
o

u
rs

Year of study

OOP teaching hours of "OOP practising" courses per
year

FOI

UNIZA

UPCE

FON

HTW

30

1.2. Analysis of prior requirements of universities’ OOP related courses

The gap between universities and high schools could lie in the different expectations of skills and

knowledge of the universities and the real skills and knowledge of absolvents of high schools. In order

to investigate this question, we performed analysis of prior skills and prior knowledge. The

methodology was as follows:

1. We divided courses to OOP teaching, OOP practicing and OOP using.

2. From every subject we identified areas of prior requirements based on prior knowledge and

prior skills provided by partners.

3. To identify overlaps between partners we created matrices of areas of prior requirements of

subjects.

4. Based on experience and related work we interpreted data and formulated conclusion related

to our project.

The areas of prior requirements were identified as follows.

 None (there is no specific prior knowledge or skill requested).

 Code comprehension (student has ability to understand code written in a programming

language).

 Algorithmization (student can write an algorithm based on description of some process).

 Structural programming (student can write structured code using basic control structures).

 Object programming (student can write code following basic principles of OOP – objects,

composition, association). This requirement is listed as well, since some courses from the

analysis build upon knowledge of other courses, where such topic is covered. For the sake of

consistency, we present the analysis of all university courses, however we will exclude such

courses in conclusion.

 Sophisticated programming (student can write sophisticated code using proper paradigm in

order to solve non-trivial problems).

 Data structures (student understands the philosophy and usage of fundamental data

structures).

 Mathematics HS (student can solve math problems of the high school level).

 Mathematics UNI (student can solve math problems of the university level).

 Programming language (student can write algorithms in specified programming language).

 UML (student can create various UML diagrams with proper usage in particular situation).

 Software architecture (student is capable to create proper design of software following

principles of selected architecture).

 Computer networks (student understands the principles of computer networks).

 Use of IDE (student knows how to use IDE and respective tools such as compiler, debugger,

code editor).

 Use of PC (student knows how to install application, browse web, (un)pack files, work with

office applications).

Areas of prior requirements for every subject are listed in separate tables with structure presented

below. Tables include also relevant data (collected data are enclosed in attachment) without further

content modifications, so the identification of respective areas is clear. For better orientation we

highlighted relevant row. Every table contains:

 Subject name.

31

 Type of subject (mandatory/optional).

 Year of study.

 Prior knowledge required to attend the subject.

 Learning outcomes of related course - if analyzed course requests knowledge of some other

subject, we put the learning outcome of that other subject. If there is no prerequisite, this row

is not included in the table.

 Prior skills required to attend the subject.

 Areas of prior requirements – List of requirements of analyzed subject. These are derived from

required prior knowledge, from learning outcomes of related course and from required prior

skills.

1.2.1. OOP teaching courses

Following table summarizes OOP teaching courses as defined in the OOP load analysis.

Table 22 - OOP teaching courses considered in the prior requirements analysis

University Subject name
Type of
subject

Year

FOI Object-oriented programming Mandatory 1

HTW Programming II Mandatory 1

FON Programming 2 Mandatory 2

UNIZA Informatics 1 Mandatory 1

UNIZA Informatics 2 Mandatory 1

UNIZA Practice of programming 1 Optional 1

UNIZA Practice of programming 2 Optional 1

UPCE Basics of Algorithmization Mandatory 1

UPCE Algorithmization and programming practicum Mandatory 1

UPCE Basics of Programming Using Java Programming Language Mandatory 1

UPCE Object Oriented Programming Mandatory 2

UPCE Language C++ I Mandatory 2

UPCE The C# Programming Language Mandatory 2

1.2.1.1. FOI

On FOI, there is one mandatory OOP teaching course in the first year of study analyzed.

32

Table 23 - Prior requirements analysis of course Object-oriented programming on FOI

Subject name Object-oriented programming

Type of subject Mandatory

Year 1

Prior knowledge Algorithmic problem-solving, basics of structural programming, simple and

complex data structures, control structures (sequence, selection, iteration,

jump statements), functions and procedures.

Prior skills The course requires basic skills in writing and understanding procedural code

and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Structural programming

Data structures

Code comprehension

Use of IDE

1.2.1.2. HTW

On HTW, there is one mandatory OOP teaching course in the first year of study analyzed.

Table 24 - Prior requirements analysis of course Programming II on HTW

Subject name Programming II

Type of subject Mandatory

Year 1

Prior knowledge Knowledge of Programming in C (builds on Programming I)

Learning outcome

of Programming I

Ability to implement algorithms in an imperative programming language (C),

use of program development tools, testing of programs

Prior skills Working with development tools, editor, compiler, debugger

Areas of prior

requirements

Algorithmization

Programming language C

Use of IDE

33

1.2.1.3. FON

On FON, there is one mandatory OOP teaching course in the second year of study analyzed.

Table 25 - Prior requirements analysis of course Programming 2 on FON

Subject name Programming 2

Type of subject Mandatory

Year 2

Prior knowledge Competence of students to develop software using the method of functional

decomposition and structured programming in an imperative language.

Prior skills Active usage of IDE components (editor, debugger,...)

Areas of prior

requirements

Algorithmization

Structural programming

Use of IDE

1.2.1.4. UNIZA

On UNIZA, there are two mandatory and two optional OOP teaching courses in the first year of study

analyzed.

Table 26 - Prior requirements analysis of course Informatics 1 on UNIZA

Subject name Informatics 1

Type of subject Mandatory

Year 1

Prior knowledge No prior prerequisites are specified. The course is in the first semester of the

first year of study. Strategy of faculty is to provide the education in informatics

for any students including students with no prior knowledge of programming.

An additional course for students without programming knowledge is a

Practice of programing 1.

Prior skills Basic usage of PC (turn on/off, install IDE, pack/unpack files, browse web, work

with word processor).

Areas of prior

requirements

Use of PC

34

Table 27 - Prior requirements analysis of course Practice of programming 1 on UNIZA

Subject name Practice of programming 1

Type of subject Optional

Year 1

Prior knowledge No prior prerequisites are specified. The course is in the first semester of the

first year of study. Strategy of faculty is to provide the education in informatics

for any students including students with no prior knowledge of programming.

This is reflected in the course Informatics 1. Practice of programming is

supplementary course, so no special requirements beside the very basic of

computer usage are required.

Prior skills Basic usage of PC (turn on/off, install IDE, pack/unpack files, browse web, work

with word processor), no programming skills are required.

Areas of prior

requirements

Use of PC

Table 28 - Prior requirements analysis of course Informatics 2 on UNIZA

Subject name Informatics 2

Type of subject Mandatory

Year 1

Prior knowledge Knowledge of Informatics 1 are required.

It is not required to absolve Practice of programming 1.

Learning outcome

of Informatics 1

After the course student:

- is able to construct algorithms using all basic construction elements,

- correctly applies the principles of object-oriented programing,

- creates complex object-oriented programs,

- integrates the proposed algorithms into the designed object structure

Prior skills Basic usage of PC (turn on/off, install IDE, pack/unpack files, browse web, work

with word processor).

Areas of prior

requirements

Algorithmization

Object programming

Use of PC

Table 29 - Prior requirements analysis of course Practice of programming 2 on UNIZA

35

Subject name Practice of programming 2

Type of subject Optional

Year 1

Prior knowledge Knowledge of Informatics 1 are required.

It is not required to absolve Practice of programming 1.

Learning outcome

of Informatics 1

After the course student:

- is able to construct algorithms using all basic construction elements,

- correctly applies the principles of object-oriented programing,

- creates complex object-oriented programs,

- integrates the proposed algorithms into the designed object structure

Prior skills Basic usage of PC (turn on/off, install IDE, pack/unpack files, browse web, work

with word processor).

Areas of prior

requirements

Algorithmization

Object programming

Use of PC

1.2.1.5. UPCE

On UPCE, there are six mandatory OOP teaching courses analyzed. Three of them take part in first year

of study, three of them in the second year of study.

Table 30 - Prior requirements analysis of course Basics of Algorithmization on UPCE

Subject name Basics of Algorithmization

Type of subject Mandatory

Year 1

Prior knowledge Only basic knowledge of mathematics on the level of a secondary school is

necessary.

Prior skills Only basic usage of PC (turn on/off, install IDE, pack/unpack files, browse

web).

Areas of prior

requirements

Mathematics HS.

Use of PC

Table 31 - Prior requirements analysis of course Algorithmization and programming practicum on UPCE

36

Subject name Algorithmization and programming practicum

Type of subject Mandatory

Year 1

Prior knowledge Subject matter of the subject Introduction to Algorithms.

Prior skills Only basic usage of PC (turn on/off, install IDE, pack/unpack files, browse

web).

Areas of prior

requirements

Use of PC

Table 32 - Prior requirements analysis of course Basics of Programming Using Java Programming Language on UPCE

Subject name Basics of Programming Using Java Programming Language

Type of subject Mandatory

Year 1

Prior knowledge A prerequisite for mastering this course is successful completion of the course

"Basics of Algorithmization"

Learning outcome

of Basics of

Algorithmization

The aim of this course is to make students familiar with the basics of

algorithmization, algorithmic way of thinking and preparing students for

learning basics of programming.

Improving of analytical and logical thinking . Ability to create and write

algorithms

Prior skills Ability to create and write algorithms.

Areas of prior

requirements

Algorithmization

Code comprehension

Use of PC

37

Table 33 - Prior requirements analysis of course Object Oriented Programming on UPCE

Subject name Object Oriented Programming

Type of subject Mandatory

Year 2

Prior knowledge A prerequisite for mastering this course is successful completion of the course

"Basics of Programming Using Java Programming Language"

Learning outcome

of Basics of

Programming

Using Java

Programming

Language

Students learn to analyze basic tasks in the area of programming and then to

implement them using Java programming language.

Student will be able to implement a simple algorithms using the Java

programming language.

Prior skills Ability to create and write algorithms in Java language, basic knowledge of

Object, Classes.

Areas of prior

requirements

Algorithmization

Code comprehension

Object programming

Programming language Java

38

Table 34 - Prior requirements analysis of course Language C++ I on UPCE

Subject name Language C++ I

Type of subject Mandatory

Year 2

Prior knowledge Successful completion of the course Introduction to C language.

A prerequisite is basic knowledge from the field of algorithmization and object

oriented programming.

Learning outcome

of Language C

To learn basic programming techniques of structured programming in C

language.

After taking the course, the student has basic skills in C language

programming.

Prior skills Ability to create and write algorithms in C language, knowledge of Object,

Classes

Areas of prior

requirements

Algorithmization

Code comprehension

Structural programming

Object programming

Programming language C

39

Table 35 - Prior requirements analysis of course The C# Programming Language on UPCE

Subject name The C# Programming Language

Type of subject Mandatory

Year 2

Prior knowledge Successful completion of the course Introduction to C language.

A prerequisite is basic knowledge from the field of algorithmization and object

oriented programming, data structures and C++ programming

Learning outcome

of Language C

To learn basic programming techniques of structured programming in C

language.

After taking the course, the student has basic skills in C language

programming.

Prior skills Ability to create and write algorithms in C language, knowledge of Object,

Classes

Areas of prior

requirements

Algorithmization

Code comprehension

Structural programming

Object programming

Data structures

Programming language C

1.2.1.6. Prior requirements matrix

To focus only on relevant data, we present following matrix of prior requirements for OOP teaching

courses.

40

Table 36 - Prior requirements matrix of OOP teaching courses
 O

b
je

ct
-o

ri
en

te
d

 p
ro

gr
am

m
in

g

P
ro

gr
am

m
in

g
II

P
ro

gr
am

m
in

g
2

In
fo

rm
at

ic
s

1

In
fo

rm
at

ic
s

2

P
ra

ct
ic

e
o

f
p

ro
gr

am
m

in
g

1

P
ra

ct
ic

e
o

f
p

ro
gr

am
m

in
g2

B
as

ic
s

o
f

A
lg

o
ri

th
m

iz
at

io
n

A
lg

o
ri

th
m

iz
at

io
n

 a
n

d
 p

ro
gr

am
m

in
g

p
ra

ct
ic

u
m

B
as

ic
s

o
f

P
ro

gr
am

m
in

g
U

si
n

g
Ja

va

P
ro

gr
am

m
in

g
La

n
gu

ag
e

O
b

je
ct

 O
ri

en
te

d
 P

ro
gr

am
m

in
g

La
n

gu
ag

e
C

+
+

I

Th
e

C

P
ro

gr
am

m
in

g
La

n
gu

ag
e

Algorithmization x x x x x x x x x

Structural programming x x x x

Object programming x x x x x

Data structures x x

Programming language Java x

Programming language C x x x

Mathematics HS x

Code comprehension x x x x x

Use of IDE x x x

Use of PC x x x x x x x

Requirements distribution of OOP teaching courses is summarized in following table. We highlighted

top third of most important requirements:

41

Table 37 - Distribution of requirements of OOP teaching courses

Requirement Required by %

Algorithmization 9 69%

Use of PC 7 54%

Object programming 5 38%

Code comprehension 5 38%

Structural programming 4 31%

Programming language C 3 23%

Use of IDE 3 23%

Data structures 2 15%

Programming language Java 1 8%

Mathematics HS 1 8%

OOP teaching courses take place in first years of study. One has to realize that previous step of

education is high school. Moreover, we deem listed requirements to be the most important, because

they are required by OOP teaching courses. Recall that these courses are primarily focused on teaching

new concepts. Focus on these competencies on high school is therefore very important for successful

university study in informatics related study programs.

1.2.2. OOP practicing courses

Following table summarizes OOP practicing courses as defined in the OOP load analysis.

Table 38 - OOP practicing courses considered in the prior requirements analysis

University Subject name
Type of
subject

Year

FOI Windows Applications Development Optional 2

FOI Programming 2 Mandatory 1

FOI Mobile applications and games development Mandatory 3

HTW Software Engineering 2 Mandatory 2

HTW Programming of component architectures Optional 2

UNIZA Informatics 3 Mandatory 2

UNIZA Algorithms and Data structures 1 Mandatory 2

UPCE Data Structures Mandatory 2

42

1.2.2.1. FOI

On FOI, there are three OOP practicing courses analyzed: Mandatory in first year of study, optional in

second year of study and mandatory in third year of study.

Table 39 - Prior requirements analysis of course Windows Applications Development on FOI

Subject name Windows Applications Development

Type of subject Optional

Year 2

Prior knowledge The prerequisites include the successful completion of Object-oriented

programming course.

Learning outcome

of Object-oriented

programming

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Prior skills The course requires basic skills in writing and understanding procedural and

object-oriented code and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Object programming

UML

Code comprehension

Use of IDE

43

Table 40 - Prior requirements analysis of course Programming 2on FOI

Subject name Programming 2

Type of subject Mandatory

Year 1

Prior knowledge Algorithmic problem-solving, basics of structural programming, simple and

complex data structures, control structures (sequence, selection, iteration,

jump statements), functions and procedures.

Prior skills The course requires basic skills in writing and understanding procedural code

and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Structural programming

Data structures

Use of IDE

44

Table 41 - Prior requirements analysis of course Mobile applications and games development on FOI

Subject name Mobile applications and games development

Type of subject Mandatory

Year 3

Prior knowledge The prerequisites include the successful completion of Object-oriented

programming course and Mathematics 1 course.

Learning outcome

of Object-oriented

programming

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Prior skills No prior skills are defined in course curriculum. However, one can conclude

that the course requires basic skills in writing and understanding procedural

code and the use of integrated development environments as these topics are

not tought but are the base for the other topics included.

Areas of prior

requirements

Algorithmization

Structural programming

Data structures

Mathematics UNI

Code comprehension

Use of IDE

1.2.2.2. HTW

On HTW, there is one mandatory and one optional OOP practicing course in the second year of study

analyzed.

45

Table 42 - Prior requirements analysis of course Software Engineering 2 on HTW

Subject name Software Engineering 2

Type of subject Mandatory

Year 2

Prior knowledge Object-oriented programming languages (C++ or JAVA)

Prior skills Fundamental programming skills in procedural and object-oriented styles

Areas of prior

requirements

Structural programming

Object programming

Programming language Java

Programming language C++

Table 43 - Prior requirements analysis of course Programming of component architectures on HTW

Subject name Programming of component architectures

Type of subject Optional

Year 2

Prior knowledge Object-oriented programming languages (C++ or JAVA)

Prior skills Sophisticated programming skills, fundamentals of software architecture and

computer networks

Areas of prior

requirements

Programming language Java

Programming language C++

Sophisticated programming

Software architecture

Computer networks

1.2.2.3. FON

There are no OOP practicing courses to be analyzed on FON.

1.2.2.4. UNIZA

On UNIZA, there are two mandatory OOP practicing courses in the second year of study analyzed.

46

Table 44 - Prior requirements analysis of course Informatics 3 on UNIZA

Subject name Informatics 3

Type of subject Mandatory

Year 2

Prior knowledge Students should have knowledge of Informatics 1 and 2

Learning outcome

of Informatics 1

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Learning outcome

of Informatics 2

After the course student:

- uses the principle of polymorphism in the design of object structure and

algorithms,

- clearly organizes the structure of projects using packages,

- resolves program error states,

- uses advanced principles in design of the object structure, such as inheritance

and generics,

- creates a simple user interface

Prior skills Basic knowledge of an IDE software for source code editing.

Areas of prior

requirements

Algorithmization

Object programming

Use of IDE

47

Table 45 - Prior requirements analysis of course Algorithms and Data structures 1 on UNIZA

Subject name Algorithms and Data structures 1

Type of subject Mandatory

Year 2

Prior knowledge Informatics 2

Informatics 3

Learning outcome

of Informatics 2

After the course student:

- uses the principle of polymorphism in the design of object structure and

algorithms,

- clearly organizes the structure of projects using packages,

- resolves program error states,

- uses advanced principles in design of the object structure, such as inheritance

and generics,

- creates a simple user interface

Learning outcome

of Informatics 3

After completing the course, student will be able to:

- analyze and create solutions using procedural and object-oriented approach,

- create basic applications using C and C++ languages,

- create and debug applications using MS Visual Studio IDE.

Prior skills - Analysis of given problem, focus on what is important.

- Skill with some UML modelling tool with focus on class diagrams.

- To create semestral project skills in object oriented language with low

memory management (C++).

- To create documentation: skill with any word processor (MS Word,

OpenOffice Writer, LaTeX..).

- Skills in any table processor in order to analyze input data and plot functions

based on them.

- Ability to formulate and present conclusions according to data analysis.

Areas of prior

requirements

Sophisticated programming

Programming language C++

UML

Use of IDE

Use of PC

48

1.2.2.5. UPCE

On UPCE, there is one mandatory OOP practicing course in the second year of study analyzed.

Table 46 - Prior requirements analysis of course Data Structures on UPCE

Subject name Data Structures

Type of subject Mandatory

Year 2

Prior knowledge A prerequisite is basic knowledge from the field of algorithmization and object

oriented programming.

Prior skills There is expected elementary knowledge from the field of algorithmic

techniques and object-oriented programming.

Areas of prior

requirements

Algorithmization

Object programming

1.2.2.6. Prior requirements matrix

To focus only on relevant data, we present following matrix of prior requirements for OOP practicing

courses.

49

Table 47 - Prior requirements matrix of OOP practicing courses

 W
in

d
o

w
s

A
p

p
lic

at
io

n
s

D
ev

el
o

p
m

en
t

P
ro

gr
am

m
in

g
2

M
o

b
ile

 a
p

p
lic

at
io

n
s

an
d

 g
am

e
s

d
ev

el
o

p
m

en
t

So
ft

w
ar

e
En

gi
n

ee
ri

n
g

2

P
ro

gr
am

m
in

g
o

f
co

m
p

o
n

en
t

ar
ch

it
ec

tu
re

s

In
fo

rm
at

ic
s

3

A
lg

o
ri

th
m

s
an

d
 D

at
a

st
ru

ct
u

re
s

1

D
at

a
St

ru
ct

u
re

s

Algorithmization x x x x x

Structural programming x x x

Object programming x x x x

Sophisticated programming x x

UML x x

Code comprehension x

Use of IDE x x x x x

Use of PC x

Data structures x

Mathematics UNI x

Code comprehension x

Programming language Java x x

Programming language C++ x x x

Software architecture x

Computer networks x

Requirements distribution of OOP practicing courses is summarized in following table. We highlighted

top third of most important requirements:

50

Table 48 - Distribution of requirements of OOP practicing courses

Requirement Required by %

Algorithmization 5 63%

Use of IDE 5 63%

Object programming 4 50%

Structural programming 3 38%

Programming language C++ 3 38%

Sophisticated programming 2 25%

UML 2 25%

Programming language Java 2 25%

Code comprehension 1 13%

Use of PC 1 13%

Data structures 1 13%

Mathematics UNI 1 13%

Code comprehension 1 13%

Software architecture 1 13%

Computer networks 1 13%

OOP practicing courses mostly take place in second years of study. They build upon the OOP teaching

courses. One can see bigger variety in prior requirements (there can be clearly observed movement

towards particular languages/technologies and sophisticated programming), however the

algorithmization is still key competence of students. Note, that three out of four requirements are

shared with OOP teaching courses, what justifies the importance of proper outcomes that should be

provided by high schools.

1.2.3. OOP using courses

Following table summarizes OOP using courses as defined int the OOP load analysis.

51

Table 49 - OOP using courses considered in the prior requirements analysis

University Subject name
Type of
subject

Year

FOI Programming in Python Optional 3

HTW Programming I Mandatory 1

HTW Programming distributed systems Optional 2

FON Data structures and algorithms Mandatory 2

1.2.3.1. FOI

On FOI, there is one optional OOP using course in the third year of study analyzed.

Table 50 - Prior requirements analysis of course Programming in Python on FOI

Subject name Programming in Python

Type of subject Optional

Year 3

Prior knowledge The prerequisites include the successful completion of Object-oriented

programming course.

Learning outcome

of Object-oriented

programming

After the course student is able to:

- Design an efficient software solution for a given algorithmic problem

- Create models of the software solution using standard UML diagrams

- Organize date in an efficient way for a given algorithmic problem.

- Create models of data structures using standard UML diagrams

- Develop a software solution for a given algorithmic problem using object-

oriented programming language.

Prior skills The course requires basic skills in writing and understanding procedural and

object-oriented code and the use of integrated development environments.

Areas of prior

requirements

Algorithmization

Object programming

UML

Code comprehension

Use of IDE

52

1.2.3.2. HTW

On HTW, there is one mandatory and one optional OOP practicing course in the first and second year

of study analyzed.

Table 51 - Prior requirements analysis of course Programming I on HTW

Subject name Programming I

Type of subject Mandatory

Year 1

Prior knowledge None

Prior skills Basic handling of computers, file editing

Areas of prior

requirements

Use of PC

Table 52 - Prior requirements analysis of course Programming distributed systems on HTW

Subject name Programming distributed systems

Type of subject Optional

Year 2

Prior knowledge Object-oriented programming languages (C++ or JAVA)

Prior skills Sophisticated programming skills, fundamentals of software architecture and

computer networks

Areas of prior

requirements

Programming language Java

Programming language C++

Sophisticated programming

Software architecture

Computer networks

1.2.3.3. FON

On FON, there is one mandatory OOP using course in the second year of study analyzed.

53

Table 53 - Prior requirements analysis of course Data structures and algorithms on FON

Subject name Data structures and algorithms

Type of subject Mandatory

Year 2

Prior knowledge Basic knowledge of Java

Prior skills Active usage of IDE components (editor, debugger,...)

Areas of prior

requirements

Programming language Java

Use of IDE

1.2.3.4. UNIZA

There are no OOP practicing courses to be analyzed on UNIZA.

1.2.3.5. UPCE

There are no OOP practicing courses to be analyzed on UPCE.

1.2.3.6. Prior requirements matrix

To focus only on relevant data, we present following matrix of prior requirements for OOP using

courses.

54

Table 54 - Prior requirements matrix of OOP using courses

 P
ro

gr
am

m
in

g
in

 P
yt

h
o

n

P
ro

gr
am

m
in

g
1

P
ro

gr
am

m
in

g
d

is
tr

ib
u

te
d

 s
ys

te
m

s

D
at

a
st

ru
ct

u
re

s
an

d
 a

lg
o

ri
th

m
s

Algorithmization x

Object programming x

Sophisticated programming x

UML x

Code comprehension x

Use of IDE x x

Use of PC x

Programming language Java x x

Programming language C++ x

Software architecture x

Computer networks x

Requirements distribution of OOP using courses is summarized in following table. We highlighted the

most different requirements.

55

Table 55 - Distribution of requirements of OOP using courses

Requirement Required by %

Use of IDE 2 50%

Programming language Java 2 50%

Algorithmization 1 25%

Object programming 1 25%

Sophisticated programming 1 25%

UML 1 25%

Code comprehension 1 25%

Use of PC 1 25%

Programming language C++ 1 25%

Software architecture 1 25%

Computer networks 1 25%

There can not be observed any pattern of occurrence in OOP using courses. These courses build upon

the OOP teaching and practicing courses. Even more variety in prior requirements than in OOP

practicing courses can be seen. Based on very small difference between requirements and because of

the small number of courses in this category, we should not make any conclusion regarding the

requirements. However one can observe that the requirement of algorithmization is present also in

this group of subjects.

1.2.4. Conclusion

To identify the most relevant requirements we took most important requirements of different type of

courses (see tables

56

Table 37, Table 48 and Table 55). Then we computed the distribution of every requirement among all

courses and sorted them. The processed data are summarized in following table. Again, we highlighted

the most different requirements.

57

Table 56 - Distribution of requirements of all OOP courses

 Teaching Practicing Using Total

Requirement
out of

13
%

out of

8
%

out of

4
%

out of

25
%

Algorithmization 9 69 5 63 1 25 15 60

Use of IDE 3 23 5 63 2 50 10 40

Use of PC 7 54 1 13 1 25 9 36

Object programming 5 38 4 50 1 25 9 36

Structural programming 4 31 3 38 - - 7 28

Code comprehension 5 38 1 13 1 25 6 24

Programming language Java 1 8 2 25 2 50 5 20

Programming language C++ - - 3 38 1 25 4 16

Regarding performed analysis the most required prior skills, which must be properly integrated into

the new concept of teaching, are:

 Algorithmization.

 Use of IDE.

 Use of PC.

We can compare prior requirements to learning outcomes from lower levels of education. In Slovakia,

programming is taught in primary and secondary schools. It is also based on the innovative State

Educational Program, where various programming topics are incorporated into the Computer science

subject. Regarding algorithmization, these are, for example [1]:

 identification of relationships between information (input - output),

 writing the algorithm and executing the program,

 statements, parameters and sequencing,

 variables and mathematical operations with numbers (addition, subtraction, multiplication,

division),

 loops,

 conditional statements,

 debugging.

In February 2022, a survey was conducted in Slovakia focused on "the professional competences and

attitudes of computer science teachers in the field of programming about teaching programming at

elementary and secondary schools". With a closer focus on secondary schools, we found the following

[2]:

 45.1% of secondary school teachers have less than 5 years of experience teaching

programming,

 19% of secondary school teachers are not qualified to teach informatics (including

programming),

58

 teachers teach the most common programming languages Python, Imagine Logo, Scratch,

C/C++/ C#.

 the Java programming language is taught in 5.2% of secondary schools,

 9.1% of teachers do not know any programming language,

 most programming languages are taught by university-qualified teachers,

 OOP is taught by 27.5% of teachers,

 OOP is not mastered by 47.5% of secondary school teachers.

Results of this survey imply disproportion with higher education prior requirements. However,

teachers have positive attitudes towards programming, and compared to surveys from 2019 and 2022,

the number of qualified computer science teachers has increased, which can have a positive impact

on teaching programming.

Another survey concerned university students concludes [3]:

 52% of students are satisfied with the computer science they learned in high school,

 only 46% of students said that computer science prepared them for university studies,

 64.5% of students said that they lacked programming skills in secondary school computer

science with regard to the needs of university studies.

Literature review performed by Qian and Lehman [4] summarizes difficulties, related factors and

potential strategies to address then. Authors declare that learners’ prior knowledge plays an important

role in forming misconceptions. They imply that according to conceptual change theories, learners’

prior knowledge plays an important role in forming misconceptions. They divide knowledge into three

areas – syntactic, conceptual and strategic. Among other strategies and tools to overcome difficulties,

authors present following strategies addressing them:

 Advanced editors or graphical programming environments can highlight or prevent syntax

errors, reduce cognitive load, and help students with syntactical difficulties.

 Well-chosen program examples can help students build accurate understanding of

programming and improve knowledge transfer.

 Visualization tools such as Python. Tutor can help students to visualize code execution step by

step and build correct mental models.

 Explicitly teaching debugging strategies and using enhanced debugging tools (e.g., providing

detailed error messages) may improve students’ debugging skills.

Choosing proper IDE and programming language, both meeting forementioned issues and prior

requirements, is important part of this project. Batur did a literature review [5], where she focused on

OOP. She found that OOP courses are usually taught with educational integrated development

environment (eIDE) like Greenfoot or BlueJ. Novice programmers have to learn the concept of OOP,

the syntax of Java and the usage of an eIDE. Currently a frame-based approach using Stride language

is available in these eIDEs [6]. Benefits of using BlueJ summarizes Hubwieser [7]. From the paper we

point out that it allows the students to work interactively with classes and objects before writing their

first program, e.g. inspect the attribute values or invoke methods.

When teaching programming, it is necessary to focus on a programming language that has the so-

called a low threshold (it's easy to start with) and a high ceiling (even as time passes, it still provides

opportunities to create more and more complicated tasks) [8]. In connection with this, there is the

concept of mediated transfer, where two methods are used:

59

 hugging - creating such connections between contexts when the teacher introduces a new

educational situation that is similar to a previous one,

 bridging - the teacher points out the parallels between content elements and helps the process

of abstraction, the student must consciously use abstraction and look for connections between

two contexts.

Vygotsky's theory is based on the zone of proximal development. It means that the new knowledge

should be closely related to the knowledge that the student has already learned. To support the

acquisition of knowledge, the concept of scaffolding can be used, which tries to facilitate the

understanding of jointly performed activities and enable them to acquire skills for solving a problem,

performing a task, or achieving a goal, despite the fact that they may not have sufficient experience to

handle the activities independently. The most common educational approach in the field of

programming is constructivism, and supporting approaches in teaching OOP are [8]:

 creating games,

 team or pair work,

 problem-based teaching focusing on a realistic problem,

 project teaching,

 Inquiry-based education.

One of the specific methodologies that are used for OOP [9]:

1. discuss fundamental principles of object-orientation with respect for conventional thinking,

2. introduce an object concept by observing the real world,

3. acquire the class concept by abstraction of many common objects,

4. introduce instantiation after the class concept is learned,

5. illustrate subclasses by adding more details to an existing class and superclasses by finding

common things among several classes,

6. (optional) discuss metaclasses to master the class completely and object concepts.

At secondary schools, conditions are created for teaching programming from the point of view of the

innovative State Educational Program. Based on the survey, however, it appears that there are

secondary school teachers who do not have programming knowledge and we assume that they do not

even teach programming. On the other hand, many teachers have positive attitudes towards

programming. Based on a survey of university students, it appears that they want to learn

programming and it is necessary for their university studies. There are several programming

approaches that can be used in OOP. With respect to prior requirements of universities’ OOP courses,

we need to focus on algorithmization and proper IDE using low threshold language. A good choice will

be educational integrated development environment (eIDE) like Greenfoot or BlueJ that are most often

used and offer the use of Java programming language as well as frame-based approach using Stride.

60

1.3. Analysis of approaches for teaching OOP

1.3.1. Remarks on gathered data

In order to investigate practices in universities with regard to teaching object-oriented programming

(OOP), we gathered data from relevant courses taught at project partner institutions. These high

education institutions come from 5 countries which differ in terms of high education strategy and

tradition. Also, some partner institutions are from technical fields, while others have strong social and

business component. Finally, the courses themselves differ with regard to academic year they are

taught, the content, and the teachers involved. This allowed us to gather sufficiently diverse data to

identify wide range of practices, tools and methods used for teaching OOP.

1.3.2. Identified themes

1.3.2.1. Forms of instruction / forms of knowledge transfer

Lectures

With regard to forms of instruction all of the 21 analyzed courses favor lectures as a primary means to

transfer theoretical knowledge to students. In order to do that, teachers stick with tradition and start

by explaining underlying theoretical concepts (in 100% of analyzed courses). However, in 57% of

courses teachers provide code examples and use scenarios to motivate students and put course

content into real-life context. In majority of courses there is an emphasis on a two-way communication

between lecturer and students, and between students themselves. Students are regularly encouraged

to ask questions and provide feedback (81% of courses), and in some way to even get involved into

discussions (14% of courses). In one of the courses interactivity and using practical examples is

particularly emphasized by teacher writing programming code and students discuss it in real-time.

Chart 28 - Forms of knowledge transfer used in lectures

1
0

0
%

8
1

%

1
4

%

5
7

%

5
%

F R E Q U E N C Y

LECTURE METHODS

Explanation Q&A

Discussion Motivational/code examples

Real-time demonstration

61

Seminars/Laboratory exercises

Transferring practical knowledge is seen as an essential activity in all the analyzed courses. Laboratory

exercises involving students working on a computer were recognized as the most suitable form of

instruction for doing that. Although learning-by-doing is the core approach in laboratory exercises of

all courses, this was conducted in two distinct ways: (1) “Teacher-first” - teacher goes through an

illustrative example together with students, and then students work on their own with occasional help

and guide from the teacher (67% of courses), (2) “Student-first” students immediately start working

on their own, but teacher provides intensive assistance (33% of courses). Students’ activities and

efforts in laboratory exercises are in some courses a prerequisite for taking exam, while in others are

graded and are constituent part of course evaluation.

Chart 29 - Learning-by-doing approach in laboratory exercises

1.3.2.2. Individual work

Practical assignments

In 33% of analyzed courses no home practical assignments were given to students during the semester.

In such cases, courses rely solely on laboratory exercises to transfer practical knowledge, and

traditional exams to evaluate it. However, most courses (67% of courses) require students to do some

practical work at home. Such practical assignments expect students to gain and demonstrate general

skills such as problem analysis and problem solving, as well as specific skills related to application of

OOP principles and particular technology. The courses, however, differ in terms of when these

assignments are done, as well as the size and the number of assignments. In 2 out of 14 courses with

home assignments student start working on assignments during laboratory exercises (with teachers

providing continuous feedback) and finish them at home. In the rest of courses (12 out of 14) practical

assignments are entirely done at home, and only submitted for evaluation at specific points during the

semester or at the end of the semester.

The size and the number of practical assignments in analyzed courses are correlated and depend on

the overall course load. In some courses students are required to submit one larger-scale practical

assignment (e.g. semestral project) which encompasses all relevant topics taught at the course. Other

courses prescribe several smaller-scale practical assignments, with each assignment targeting

particular topic (e.g. weekly topic), or a phase in software development process (e.g. problem analysis

phase, design, implementation, documentation…). In some cases, these smaller-scale assignments are

67%

33%

Teacher-first

Student-first

62

linked to each other. For example, assignment covering design phase acts as an input model for an

assignment covering implementation phase.

Most courses (11 out of 14) see practical assignments as an individual, one-student activity, while only

3 courses either allow or even mandate working in teams in a traditional or agile manner. In addition

to teacher’s feedback and evaluation, students are often required to present their solutions in front of

classmates and also receive their feedback as well.

1.3.2.3. Assessment

Most analyzed courses (15 out of 21) assess theoretical knowledge of students either by only written

exam (4 courses), only oral exam (3 courses) or both written and oral exam (8 courses). Other courses

rely solely on practical assignments to demonstrate that students not only acquired theoretical

knowledge but were also able to apply it to practical problems.

Chart 30 - Frequency of assessment methods for theoretical knowledge

While grasping theoretical concepts is always important, acquiring practical skills in analyzed courses

was an imperative as 19 out of 21 courses had a formal assessment of practical skills. These

assessments included assessing student’s efforts on laboratory exercises during semester, evaluating

practical assignments (tasks, projects) done at home during the semester, and performing practical

parts of exam.

0%

5%

10%

15%

20%

25%

30%

35%

40%

Written exam Oral exam Both No evaluation

63

Chart 31 - Type of knowledge assessed in analyzed courses

1.3.2.4. Tools

While used technologies vary across analyzed courses, it is not surprising that mainstream object-

oriented languages dominate. For example, Java is used in 9 courses, C++ is used in 6 courses, and C#

is used in 3 courses. Other mainstream languages include Python, Kotlin and Swift, each of them being

used in only 1 course. An interesting technology (albeit used in only 1 introductory course) is RAPTOR

- a flowchart-based programming environment which allows visual programming. Such technology can

be used to demonstrate object-oriented concepts and mechanisms in a visual and less abstract way.

While most courses were mandating one “official” programming language to be used throughout the

course, three courses were more liberal, and allowed students to choose their own preferred

programming language and environment.

Chart 32 - Programming language occurence in analyzed courses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Theoretical knowledge Practical knowledge

0

1

2

3

4

5

6

7

8

9

10

Java C++ C# Flowchart Python Kotlin Swift

64

Popularity of integrated development environments (IDE) heavily depend on what programming

language is used. Courses favoring Java programming language have most diverse IDE offering, and

suggest using NetBeans (4 courses), IntelliJ IDEA (3 courses), Eclipse (2 courses) and BlueJ (2 courses).

As we can see, most courses went with mainstream IDEs that are used for real-life Java development.

However, from our perspective, a notable mention is also BlueJ IDE due to its support for teaching and

learning OOP. Microsoft Visual Studio was a first choice in courses using C++ (4 courses) and C#

programming languages (3 courses). This made Visual Studio the most represented IDE in total, and

also the only IDE used for more than one language. In addition to Visual Studio, C++ development is

also done in Dev-C++ (generally recommended for beginner programmers) and Verifikator (proprietary

IDE developed by teachers to enforce good coding practices). Other popular IDEs such as PyCharm

(Python), Android Studio (Kotlin) and Xcode (Swift) appeared each only in 1 course. Finally, the 3

courses which allowed students to choose programming language on their own, allowed students to

also choose their preferred IDE.

Table 57 - Suggested or mandated IDEs per programming language

Language IDE 1 IDE 2 IDE 3 IDE 4

Java Netbeans (4) IntelliJ IDEA (3) Eclipse (2) BlueJ (2)

C++ Visual Studio (4) Dev-C++ (1) Verifikator (1) -

C# Visual Studio (3) - - -

Python PyCharm (1) - - -

Kotlin Android Studio

(1)

- - -

Swift Xcode (1) - - -

Flowchart RAPTOR (1) - - -

65

Chart 33 - Most frequently used IDEs in analyzed courses

1.3.3. Conclusion

While approaches for teaching OOP varied in analyzed courses, there are still some general trends that

can be noticed across most of the courses. In terms of transferring theoretical knowledge, analyzed

courses favor traditional lectures coupled with practical examples and two-way teacher-student

interaction. Transferring practical knowledge is considered essential in all courses and is carried out as

a combination of laboratory exercises and individual programming projects students do at home. Most

courses have formal evaluation of theoretical knowledge either through written exam, oral exam, or

both (most frequent case). Evaluation of practical knowledge is considered even more important in

analyzed courses. Students demonstrate practical knowledge by working continuously on laboratory

exercises, by submitting tasks and projects during the semester, or by taking practical tests at the end

of semester.

Finally, in analyzed courses we can identify a number of different technologies, programming

languages and environments. Most courses use mainstream OOP languages (Java, C#, C++) and their

respective IDEs (Netbeans, IntelliJ IDEA, Eclipse, Visual Studio), which ensures students are acquainted

with tools they are likely to use in real-life software development. Some courses however take a more

lightweight approach and favor tools that are more suitable for teaching and learning OOP (RAPTOR,

BlueJ, Verifikator).

0

1

2

3

4

5

6

7

8

66

2. Horizontal analysis of high schools’ data

In order to make successful and usable gap identification in teaching of object oriented

programming between high schools and universities, the next step was to make a horizontal analysis

of high schools' data. It was done in a similar way as horizontal analysis of universities' data. The

methodology used to collect and analyze data was the same, with some minor changes in scope of

analyzed data. It was consisting of these steps:

1. All partners (from high schools) were analyzing their curricula of the subjects that are related

to teaching object oriented programming and for every subject these data were collected:

a. Subject name

b. Type of subject (compulsory or optional)

c. Grade/class (in which subject is taught)

d. Hours of teaching OOP

e. Learning outcomes

f. Topics

g. Description of teaching methods

h. Type of activities (investigation, discussion, practical work, production, data

aquisition, …)

i. Assessment

j. Teamwork experience

k. Literature

l. Suggestions on what (and how) should be improved in curriculum and/or in teaching

OOP in schools

m. Additional comments

n. Additional subjects related to programming in general

2. All partners were making a review of data. Each high school partner performed a review of

data from all other high school partners and each university partner made a review of a data

from a high school in the same country. In this way, the consistency of the data was ensured,

as well as the equalization of the way in which the data were collected. After the review

phase was over, all the partners analyzed the comments and made necessary changes in data

collections.

3. The analysis of data is performed. It was divided into five areas:

a. Analysis of OOP load. It was focused on type of schools, type of subjects, subject

names, grades/classes and hours of teaching OOP.

b. Analysis of learning outcomes and topics

c. Analysis of teaching methods, types of activities, assessments and team work

experiences

d. Analysis of literature and teaching materials

e. Analysis of suggestions on how to improve OOP teaching in schools, additional

comments from partners together with review of additional subjects related to

programming in general (not object oriented programming)

67

2.1. Analysis of OOP load

There were three types of schools involved in this analysis (schools that are partners in this project):

1. schools that provide general education (gymnasiums),

2. schools that provide vocational education (different types of vocational

programmes),

3. schools with both general and vocational education (gymnasium and vocational

programmes).

Each partner in the project was obligated to review their own curricula and identify all the subjects in

which OOP is present. That means that all the subjects where OOP is taught even on marginal level

were taken into consideration. After the partners finished the data gathering process, a total of eight

subjects were identified as subjects with OOP content. Number of relevant subjects per school can be

observed in Chart 34.

Chart 34 - High schools and numbers of OOP related subjects

As shown in the chart, all the schools have only one or two OOP related subjects. During analysis, no

big difference was observed in the number of subjects related to OOP between general and vocational

schools. However, there is a very big difference in number of subjects in which programming content

in general (without OOP) is taught but that will be mentioned in more details later.

Regarding grades (or classes) in which OOP is taught, it wasn't possible to make accurate analysis and

correlation because of differences in educational systems in different countries (differences in number

of years and grades which are considered as primary and secondary education). However, it is obvious

that none of the school is performing OOP teaching in lower grades. In 100% of cases, it is performed

in higher grades which means 3rd or 4th year of secondary education (which can be compared to 11th

or 12th grade for schools, for example, in Germany). This can be interpreted in a way that students still

need to gain some knowledge in other programming areas (basics concepts of programming,

0

1

2

3

High School
Ivanec

Gymnasium
Dresden-Plauen

Gymnasium
Pardubice

Obchodná
akadémia
Považská
Bystrica

Gimnazija
Ivanjica

N
u

m
b

er
 o

f
su

b
je

ct
s

School

Number of subjects in which OOP is taught

68

algorithms, data types, problem solving etc.) before they can successfully adopt the concepts of OOP.

Data regarding institutions, subject names and types, number of hours and grades can be observed in

Table 58.

Table 58 - Basic data of OOP related subjects

High school Subject name Grade
Type of

subject

Number of

hours (teaching

OOP)

High School Ivanec
Mobile application

development
4 Optional 15

Gymnasium

Dresden-Plauen

Practical computer science -

Advanced programming
11 or 12

Compulsory

and optional
14

Data structure and

modularization
11 or 12 Compulsory 10

Gymnasium

Pardubice

Seminare of programming 1 3 Optional 60

Seminare of programming 2 4 Optional 45

Obchodná akadémia

Považská Bystrica

Applied Informatics -

Seminar
3 Compulsory 10

Applied Informatics -

Seminar
4 Compulsory 46

Gimnazija Ivanjica
Object oriented

programming
3 Compulsory 148

As we can see, object oriented programming is taught in high schools in both compulsory and optional

subjects. Although there aren't any big differences noted in learning outcomes or teaching methods

between those two types of subjects, there is a difference for students which are later enrolled in OOP

courses in universities. Compulsory subject means that it is obligatory to all students, which leads to

conclusion that all high school students gain same knowledge and skills. On the other hand, optional

subjects are chosen only by students who really want to attend those classes, by their own choice.

After they finish their high school education (for example, in one vocational program), not all the

students have the same OOP knowledge if the OOP subject was implemented in school as optional

subject. The number of subjects divided into compulsory and optional categories is shown in Chart 35.

69

0

20

40

60

80

100

120

140

160

Mobile
application

development

Practical
computer science

- Advanced
programming

Data structure
and

modularization

Seminare of
programming 1

Seminare of
programming 2

Applied
Informatics -

Seminar

Applied
Informatics -

Seminar

Object oriented
programming

High School
Ivanec

Gymnasium
Dresden-Plauen

Gymnasium
Dresden-Plauen

Gymnasium
Pardubice

Gymnasium
Pardubice

Obchodná
akadémia

Považská Bystrica

Obchodná
akadémia

Považská Bystrica

Gimnazija Ivanjica

N
u

m
b

er
 o

f
h

o
u

rs

Subject name / high school

Number of hours per subject/high school

Chart 35 - Categorization of subjects and their number per category

As mentioned earlier, a total of eight subjects were taken into consideration for this analysis and their

distribution by category looks like this: there are four compulsory subjects, three optional subjects and

there is one subject which can be categorized as both compulsory and optional because it is one of

four optional topics in the curriculum. Teachers can decide not to implement OOP in their lessons.

When it comes to the number of hours in which OOP is taught, there are big differences between

schools. In some schools it is represented with just over 10 hours per subject while in other schools

there are subjects fully dedicated to object oriented programming with large number of hours. Those

differences can be observed in Chart 36.

Chart 36 - Distribution of hours per subject dedicated to OOP contents

0

1

2

3

4

Compulsory Optional Compulsory and optional

N
u

m
b

er
 o

f
su

b
je

ct
s

Category

Subject categories and their number per
category for analyzed schools

70

In some schools, object oriented programming is taught as a whole subject with full number of hours

dedicated to OOP content, while in most schools OOP is taught just as partial topic in one or two

subjects. For example, in Gimnazija Ivanjica (Serbia), OOP is taught in total of 148 hours in one subject

fully dedicated to OOP. At the same time, in High school Ivanec (Croatia), OOP is taught only 15 hours,

in one subject named Mobile application development, simply because OOP topics are needed for

other subject contents. In other countries, subjects that contain OOP topics are Seminare of

programming 1 and 2 (Gymnasium Pardubice), Applied Informatics – Seminars (Obchodná akadémia

Považská Bystrica) and in Gymnasium Dresden-Plauen OOP is taught through subjects named Practical

computer science - Advanced programming and Data structure and modularization.

With such big differences in curricula among different schools, it is quite clear that students cannot get

same level of knowledge and unified skills in different countries in area of object oriented

programming. This also results in different prior knowledge of the students which are needed to

continue their education at the universities.

2.2. Analysis of learning outcomes and topics and their comparison for universities

and high schools

2.2.1. Analysis and comparison

In the next list, there are 24 main topics which are taught at high schools and universities:

1. classes, objects, instance

2. methods, passing methods arguments

3. constructors

4. attributes

5. method and constructor overloading

6. static variables and methods

7. packages

8. encapsulation

9. class diagram

10. association

11. inheritance

12. composition

13. send object message

14. immutable object

15. aggregation

16. abstract classes

17. polymorphism

18. interface

19. exception

20. object live cycle

21. virtual methods

22. UML

23. Generic classes

24. Nested classes

71

The following charts show at how many universities are each topic taught:

Chart 37 – Number of universities teaching each topic

Here is the list of topics that are taught at each university:

 classes, objects, instance (1)

 methods, passing methods arguments (2)

 constructors (3)

 attributes (4)

 method and constructor overloading (5)

 static variables and methods (6)

 packages (7)

 encapsulation (8)

 class diagram (9)

 association (10)

 inheritance (11)

 abstract classes (16)

 polymorphism (17)

0 1 2 3 4 5 6

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

Topics - universities

72

 interface (18)

 object live cycle (20)

 UML (22)

The following charts show at how many high schools are each topic taught:

Chart 38 – Number of high schools teaching each topic

Here is a list of topics that are taught at each high school:

 classes, objects, instance (1)

 methods, passing methods arguments (2)

 constructors (3)

 attributes (4)

 static variables and methods (6)

 encapsulation (8)

 inheritance (11)

0 1 2 3 4 5 6

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

Topics - high schools

73

All five high schools teach OOC topics. Let us make topic analysis at each country. We will start in

Czech Republic. Following chart compares topics:

Chart 39 – Topics analysis in Czech Republic

Following topics are not in the list of all high schools’ topics:

 packages (7)

 class diagram (9)

 association (10)

 composition (12)

 send object message (13)

 immutable object (14)

 aggregation (15)

 polymorphism (17)

 virtual method (21)

 UML (22)

 Generic Classes (23)

 Nested classes (24)

-1,5 -1 -0,5 0 0,5 1 1,5

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

GYPCE vs UPCE

74

The next chart is displaying intersection of topics at University of Zilina and Obchodna academia

Povazska Bystrica:

Chart 40 – Topics analysis in Slovakia

Following topics are not in the list of all high schools’ topics:

 method and constructor overloading (5)

 packages (7)

 class diagram (9)

 association (10)

 composition (12)

 send object message (13)

 immutable object (14)

 aggregation (15)

 object life cycle (20)

 virtual method (21)

 UML (22)

-1,5 -1 -0,5 0 0,5 1 1,5

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

OAPB vs UNIZA

75

 Generic Classes (23)

 Nested classes (24)

Next chart will show Germany comparison:

Chart 41 – Topics analysis in Germany

Following topics are not in the list of all high schools’ topics:

 method and constructor overloading (5)

 packages (7)

 association (10)

 composition (12)

 send object message (13)

 immutable object (14)

 aggregation (15)

 abstract classes (16)

 interface (18)

-1,5 -1 -0,5 0 0,5 1 1,5

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

GDP vs HTW

76

 exception (19)

 object life cycle (20)

 virtual method (21)

 UML (22)

 Generic Classes (23)

 Nested classes (24)

In Germany, there are also some topics that are not taught at University. They are displayed in the

following list:

 immutable object (14)

 exception (19)

 virtual methods (21)

 generic classes (23)

 nested classes (24)

77

Next chart will show comparison in Croatia – Faculty of organization and informatics and Srednja škola

Ivanec:

Chart 42 – Topics analysis in Croatia

Following topics are not in the list of all high schools’ topics:

 packages (7)

 class diagram (9)

 association (10)

 composition (12)

 send object message (13)

 immutable object (14)

 aggregation (15)

 exception (19)

 object life cycle (20)

 virtual method (21)

 UML (22)

 Generic Classes (23)

 Nested classes (24)

-1,5 -1 -0,5 0 0,5 1 1,5

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

IVANEC vs FOI

78

In Croatia there are also some topics that are not taught at University. They are displayed in the

following list

 composition (12)

 send object message (13)

 immutable object (14)

 virtual methods (21)

 generic classes (23)

 nested classes (24)

Last country to compare is Serbia – Univerzitet u Beogradu and Gimnazija Ivanjica. Following chart

shows topics.

Chart 43 – Topics analysis in Serbia

-1,5 -1 -0,5 0 0,5 1 1,5

classes, objects, instance

methods, passing methods arguments

constructors

attributes

method and constructor overloading

static variables and methods

packages

encapsulation

class diagram

association

inheritance

composition

send object message

immutable object

agregation

abstract classes

polymorphism

interface

exception

object live cycle

virtual methods

UML

Generic classes

Nested classes

IVANJICA vs BG

79

Following topics are not in the list of all high schools’ topics:

 Method and constructor overloading (5)

 packages (7)

 class diagram (9)

 send object message (13)

 immutable object (14)

 exception (19)

 virtual method (21)

 Nested classes (24)

In Serbia there are also some topics that are not taught at university. They are displayed in the

following list:

 send object message (13)

 immutable object (14)

 virtual methods (21)

 generic classes (23)

 nested classes (24)

There is also one topic that is taught at high schools but not in university:

 generic classes (23)

2.2.2. Conclusion

Almost all topics are taught at each universities except topics 19 (exception) and 12 (composition)

which are taught at 4 institutions, topic 13 (send object message) which is missing at 2 institutions and

topics 14 (immutable object), 21 (virtual methods), 23 (generic classes) and 24 (nested classes) which

are taught only at 2 institutions. We can conclude that the main idea of OOP teaching is satisfied at all

universities. We should recommend exception topic to be added at missing institution. Such topic is

needed in case of making robust applications.

If we look to the list of topics that are taught at high schools, following ones are taught at each

institution. They are topics 1 (classes, objects, instance), 2 (methods, passing methods arguments), 3

(constructors), 4 (attributes), 6 (static variables and methods), 8 (encapsulation) and 11 (inheritance).

We can conclude that all these topics cover basics of OOP programming. At each country, the set of

high school topics is a subset of university topics with only one exception – topic number 23 - generic

classes is taught Serbia on high school but not in university. At 4 institutions topics number 16-18

(abstract classes, polymorphism and interface) are taught. Abstract classes and interface topics are

important for making larger applications and working in team. We should recommend to add this topic

to all institutions to support teamwork experience. Also other two topics should be added to all high

schools. It is topic (20) object live cycle for better understanding of OOP and topic (19) exception for

making large applications.

80

2.2.3. ‘Light OOP’ topics

From analysis above it is necessary to make list of topics called ‘Light OOP’ which should be taught at

each high school. Such list has minimal necessary knowledge to understand the principle of OOP, to

make large applications and to work in team.

1. classes, objects, instance

2. methods, passing methods arguments

3. constructors

4. attributes

6. static variables and methods

8. encapsulation

11. inheritance

16. abstract classes

18. interface

19. exception

20. object live cycle

2.3. Analysis of teaching methods, types of activities, assessments and team work

experience

2.3.1. Teaching methods

The next area that was analyzed for participating schools is teaching methods involved in educational

process. Data which were gathered regarding teaching methods are types of teaching methods and

explanations of how those methods were implemented with some simple examples.

Analysis shows that couple of teaching methods are used in most (if not all) of OOP subjects in high

schools. Those methods are:

 explanation,

 programming/practical work,

 problem solving and

 questions and answers.

It is evident that in all subjects the common way of teaching is that teacher first explains new content

and then students are performing practical work under teacher's supervision or on their own. Teacher

explains basic concepts of given topics using presentations and demonstrations (for theoretical

background of given topic) and then he uses different examples related to the topics for better

explanation. For example, teacher shows how to write a code in given programming language or

explains basic terms related to OOP (class, subclass, superclass, object) using visual elements and

simple examples. That way students can notice differences visually for better understanding.

Programming (including practical work) is another common method used in teaching process. This

method implies that contents and topics, that are explained by teacher, should be given a practical

component. Concepts (that are explained theoretically) are implemented in programming language.

81

Teacher shows how to write a code in programming language and students are following the

instructions. After that, students are working on codes on their own in similar way, under supervision

from a teacher (for example, teacher explains how to define a class, how to define attributes and

access modifiers for some attributes and students are doing the same for more attributes, they check

how changing of access modifiers affects program execution etc.). Students are working on similar

problems that were explained by the teacher, but analysis also shows that in some subjects, students

are working on more complex problems, such as developing a working software product, for example,

simple information system for business trip management or creating a visual (graphical) application.

These kind of programming is mostly present in subjects with significant number of hours related to

OOP.

Besides explanation and programming, problem solving is another method greatly used in OOP

subjects in high schools. It means that students are given a specific problem which they have to solve

by applying learned content and using gained practical programming skills. The difficulty of the

problem (assignment) also depends on the number of practical hours that the students have achieved

during classes, which is again directly related to the total number of hours of OOP in a particular

subject. That means that students enrolled in OOP subject with larger number of hours are better

prepared to solve more complex problems while the students enrolled in subjects where OOP is less

represented have a lower ability to solve complex problems.

Another method greatly presented in teaching is a method of questions and answers. Analysis shows

that students are free to ask questions if some concepts are not fully clear and then entire group starts

a discussion about it, until concepts are explained. The questions are related to the given example and

topic, for example, what is inheritance, what types of polymorphism are known in OOP, how can

objects communicate with each other, etc.). That way a group discussion is forming which produces a

peer learning, one of the most popular approaches in educational practice. Student that asked a

question benefit from this approach, but also other students who are explaining and giving answers,

because students think about the problem and give their own thoughts and suggestions.

All the mentioned methods and how often are they used in the subjects can be seen in Chart 44.

Chart 44 - Representation of teaching methods used in high school subjects

100% 100% 100%

88%

25% 25%

13%

25%

13%

frequency

Teaching methods and their usage

explanation

programming/practical work

problem solving

Q&A

fulling gaps in more complex programs

finding mistakes or better solutions

pair programming

working on given assignments

cooperative learning

82

As shown in chart and mentioned in text earlier, explanation, programming/practical work, problem

solving and questions and answers are the most common methods used in high school subjects. But,

besides these methods, it is evident that some other methods are also used, although in less amount

of subjects.

For example, fulling gaps in more complex programs and finding mistakes or finding better solutions

are used in 25% of subjects. That consists of giving students more complex structures and they have

to add missing parts as well as optimization of program solutions and debugging (finding and correcting

mistakes).

It was mentioned earlier that programming is one of the most common methods used for teaching

OOP. In addition, in one of the analyzed subjects, students are doing pair programming, which means

that two students (developers) work together on one station to design, code and test solutions. We

can also see in Chart 4. that working on given assignments is represented in 25% of subjects. It implies

that students work either on a small task for a short time, such as programming a calculator that can

work with fractions, or on a more complex task over a longer period such as programming an

information system for business trip management.

One final teaching method that is mentioned in this analysis is cooperative learning where students

work together in small groups on a structured activity which, among other benefits, increases

individual responsibility in each team member. This method is present only in one of analyzed subjects.

It is obvious that fair amount of teaching methods is used in teaching OOP in high school subjects.

Some of these methods are very common in almost all schools, such as explanation, programming,

problem solving and questions and answers. It is also evident that some schools and subjects use

methods that are not common for majority of OOP subjects, but that depends on the fact whether

OOP is the main content in a subject or it is taught as one of the topics in the subject just because it is

needed for successful understanding other topics in that subject. This is also strictly related to the

number of hours which are dedicated to OOP contents and that also directly dictates the depth to

which one can go in terms of teaching new contents.

2.3.2. Types of activities

Similar to the teaching methods, activities for students and their variety in high school subjects were

also analyzed. Students' activities are closely related to teaching methods and intertwine with each

other. In high school subjects that were analyzed, there are two activities which dominate in

educational process:

 discussion and

 practical work

In most of the analyzed subjects, discussion is stated as one of the most used activities for students.

Students and teacher are constantly engaged in conversation to make sure that students fully

understand the concepts. Students are also making discussion between themselves when they have

to complete some tasks (for example, what attributes to include in some class, how to define methods

etc.). Discussion can be done between students who are divided in groups or between students and

teacher.

83

In one of the analyzed subjects, it is stated that during the lesson of theory, the teacher presents the

topic through a presentation and shows and explains an example on the computer. Mostly these are

real-life examples, for easier understanding. During this time, students try that example on their

computers.

While having practical classes, students first work with the teacher on computer examples, and then

in pairs or small groups, they solve certain tasks assigned to them by the teacher. Students discuss,

exchange ideas with each other and with the teacher, looking for the simplest possible solution. After

that, they independently solve similar examples based on what they have learned so far, and they are

also given tasks for more complex problems and their task is to find solutions on the Internet and

understand those solutions.

This is one example of how to put a student in a center of educational process, but this kind of activity

is not present in majority of the OOP related subjects. Again, same as with teaching methods, it is

related to number of hours and depth to which certain contents are taught. It is obvious that in subjects

where OOP is taught for fewer hours, there is not enough time for this type of activity.

Practical work, as the activity for students, is involved in all subjects. It consists of programming and

problem solving when students have to make their own program solutions. Students, independently

or in groups, repeat programming steps to solve problems and even to create more complex programs.

Depending on complexity of given task, students are working either in pairs or individually. It is also

noted that students start with more simple problems and create their own solutions step by step,

which results in solving more complex problems. One of the example mentioned in analysis is the

following one: The students start with projects composed of one class (for example, Date, Person,

Animal) and try to implement them from basics. This part focuses on basic and medium

algorithmization and on basic concepts of OOP. Later, they work with projects containing at most three

or four classes and try to create simple programs, such as calculator, information system or text game.

This part focuses on explanation of advanced concepts of OOP.

Very similar to the teaching methods, in classes, a lot of attention is paid to the practical work with the

students. In this way, students acquire the necessary knowledge and skills to solve simple problems

from everyday life using concepts of OOP. The range and complexity of the problems are related to

the amount of OOP hours and ranges from solving the simplest problems in schools with a smaller

number of OOP hours to more complex problems in schools where entire subjects are dedicated to

OOP.

2.3.3. Assessments

The assessment of adoption of educational outcomes and acquired skills is also one of the very

important activities in the educational process. It relies on the defined outcomes and contents that

were taught in class, but also, the type of tasks that are evaluated must be in accordance with the tasks

and practical problems that the students encountered during the classes.

The data collected by the analysis is quite superficial for some subjects, but it is obvious that the

practical type of task appears in the assessments of all subjects. In about 40% of subjects, assessment

consists of both theoretical and practical exam. Theoretical part is related to theoretical concepts

where students have to prove they have learned the concepts of OOP.

84

There are differences in subjects of how practical skills are assessed. In 50% of subjects, students have

to create independent software product. It is stated that students get marks for their work and it

consists of following criteria: exactness, completion and complexity of the student's solution. In some

subjects, students also have to present their work.

In two of the analyzed subjects, as part of practical assignment, students must add several simple

functionalities into existing project, but also demonstrate the skills of errors understanding and their

correction. Students also work on projects. Within the course, it is necessary for students to work on

the assigned (or selected) software project and then to defend the resulting software project in a

suitable way.

In one subject that is fully dedicated to OOP (from Gimnazija Ivanjica, Serbia, with a total of 148 hours),

the evaluation of the achievement of educational goals is done through monitoring students' activities

in class and their progress during the school year. It consists of initial tests, assessing practical work on

computers, dialogues with students, discussion in class, oral exams, students' participation during

lessons, homeworks, presentations, development of projects tasks etc. The areas that are covered by

assessment are: Historical development of object oriented paradigm, basic concepts of OOP,

relationships between classes and polymorphism, creating a project task. For each area, there are

three levels of achievement defined: basic, intermediate and advanced level and for each level there

are outcomes and skills defined.

Considering the fact that this is the subject with the largest number of hours compared to the other

analyzed subjects and because that is strictly OOP subjects (all the topics and contents in this subject

are primary related to OOP), this cannot be taken as representative sample for all the subjects. All the

outcomes that students achieve as well as skills they gain in these particular subjects will be analyzed

in more details in vertical analysis between high schools and universities in the same countries. Of

course, this type of analysis. Of course, such an analysis will also be conducted for all other schools and

universities in the partner countries of the project.

2.3.4. Teamwork experience

From the aspect of education related to OOP, students' teamwork is a weak point in high schools,

which can be observed in Chart 45.

85

38%

62%

Teamwork experience in high school
subjects

Yes

No

Chart 45 - The presence of students' teamwork in high school OOP subjects

In only 38% of subjects where OOP is taught, teamwork is present and students gain teamwork

experience during lessons. In majority of subjects, students don't work in teams, they only sometimes

collaborate when they work in pairs and have to solve a certain problem, but it is without any assigned

roles.

For the subjects where teamwork is present, students work on different project tasks which are

included in curriculum of computer science and partner work is common for programming tasks. In

another subject, students are not separated into groups but everyone is involved in group. There are

maximum of 10 students in the exercises and they work as a team. Students are more active and

involved, express their opinions, cooperate with each other, solve set tasks together etc.

2.4. Analysis of literature and teaching materials

In terms of materials and literature that are used for teaching, teachers use materials intended for

teaching object-oriented programming but also their own materials which they create specifically for

their own classes. Different types of handbooks, textbooks, digital materials are used, but there also

big differences in amount of literature that is used for different subjects. In each country there is

specific situation which can be seen in Table 59.

86

Table 59 - Literature and other materials used in OOP subjects

Subject name
School,

country
Used materials and literature

Additional

comment

Mobile

application

development

High school

Ivanec,

Croatia

1. STAPIĆ, Z., ŠVOGOR, I., FODREK, D.: Mobile

application development, handbook for the 4th

grade of high school, Varaždin, 2016, ISBN: 978-953-

6071-54-8

2. VOLARIĆ, T., TOIĆ DLAČIĆ, K., IVOŠEVIĆ, I.,

DRAGANJAC, M.: Think IT, computer science

textbook for the 4th grade of high school, Alfa d.d.,

Zagreb, 2021, ID: HR-ALFA-INF4-3489

Teachers can

choose one of

the textbook

from catalogue

but also create

their own

materials. Not

obligated to use

textbooks.

Practical

computer

science -

Advanced

programming

Gymnasium

Dresden-

Plauen,

Germany

1. Duden computer science high school – revision, ISBN:

978-3-8355-1313-6

2. Digital school book: inf-schule.de

3. Curriculum Computer Science Gymnasium Saxony

(2019): www.bildung.sachsen.de/apps/lehrplandb/

Teachers use

their own

materials.

Datastructure

and

Modularization

Seminare of

programming

1
Gymnasium

Pardubice,

Czech

Republic

 Teachers use

their own

electronic

materials.
Seminare of

programming

2

Applied

Informatics –

Seminar, 3rd

grade
Obchodná

akadémia

Považská

Bystrica,

Slovakia

1. PECINOVSKÝ, R.: We start programming in Python,

Praha, Grada publishing, 2020, ISBN 978-80-271-

1237-1

2. MATTHES, E.: Python Crash Course, 2nd Edition: A

Hands-On, Project-Based Introduction to

Programming, No Starch Press, 2019, ISBN 978-15-

932-7928-8

Applied

Informatics –

Seminar, 4th

grade

1. BARNES, D., KÖLLING, M.: Objects First with Java: A

Practical Introduction Using BlueJ, 6th edition,

Pearson, 2016, ISBN 978-1-292-15904-1

2. HEROUT, P.: Java Language Textbook. České

Budějovice : Kopp, 2010, ISBN 978-80-7232-398-2

Object

Oriented

Programming

Gimnazija

Ivanjica,

Serbia

1. VUKOVIC, D.: Programming-class and objects

2. http://www.ucenjenadaljinu.edu.rs/course/

view.php?id=578

3. MILES, R.: C # basics of programming

4. LIBERTY, J.: Programming in c #

87

5. GOCIC, M.: Programming language c # -questions,

answers and solved tasks

6. MATKOVIC, S., DJURISIS, M., BAJKOVIC-LAZAREVIC, B.,

MA, ZORANOVIC, D.: Fundamentals of Programming

in the Environment of Graphic Operating Systems-

programming language c #

7. Material from various faculties, sites, courses,…

2.5. Analysis of suggestions on how to improve OOP teaching in schools

When analyzing their curricula of the subjects related to OOP, all the partners put their own

suggestions on what can be improved in OOP teaching and how to do it. There are many suggestions

that could be considered and it's very clear that they depend on differences in educational systems

among countries. There is also a fact that this analysis covers different curricula (different subjects) in

which OOP is taught, which means that maybe a suggestion for improvement by one partner is already

adopted in curricula and classes for another partner. A list of problems and possible suggestions and

solutions divided by countries are shown in Table 60.

Table 60 - Problems that teachers are facing with and suggestions for improvement the quality of classes

Country Problems and suggestions for improvement

Croatia

 More practical tasks which will include students cooperating and working

together (teamwork)

 More materials with practical tasks and exercises to support teacher's lessons

 More hours dedicated to OOP in compulsory subjects in high schools

 In primary schools, informatics and computer science in general should be

obligatory for all pupils, so they all enroll high schools with same skills and

knowledge

Germany

 Simple concept of class-object-method-attribute is taught in grade 7-10 in

various ways, but there is not enough time for programming and practical

applications

 Motivating tasks like programming games should be implemented in the

curriculum

 OOP is only a small segment in secondary school, there should be more time for

programming projects

 Formative assessments should be used

 There is normally a high heterogeneity, more individual learning settings should

be offered by teachers

Czech

Republic

 Learn object principals and programming code in obligatory subject – Informatic

 Learn simple programming techniques in obligatory subject – Informatic

 Learn programing language in obligatory subject - Informatic

88

Slovakia

 Reduce the amount of curriculum devoted to procedural programming at the

expense of OOP

 Attract students to programming by some nice projects

 Use the material "OBJEKTOVÝ PRÍSTUP K RIEŠENIU PROBLÉMOV" developed at

UNIZA, which is an OOP in a reasonable and easy-to-understand form

 Add the possibility of elaboration within the group of students

 Reduce time needed for repetition of knowledge from 3rd class and to

demonstrate usefulness of programming to students

Serbia

 Lack of literature

 The plan and program are roughly done for all IT courses, but different

programming languages are used in schools (some work in C#, others in Java…)

and are not harmonized

 Teachers are looking for material for their lessons from various sources,

magazines, textbooks and everyone does their best to make the lesson as good

as possible, in order to help students understand and comprehend

It is evident that teachers are facing with different kind of problems and obstacles in their classes, but

in general, all the problems are generated around two important areas: lack of literature and reduced

amounts of teaching hours related to OOP. Regarding literature, teachers try to overcome this obstacle

in different ways, from creating their own materials to searching different sources (textbooks,

magazines, digital platforms) for more examples which can be used with students. Regarding the

problem of small number of hours in which OOP is covered, it is mainly prescribed by the curricula of

the teaching subjects, and teachers themselves can partially influence it.

2.6. Additional comments

During the process of gathering data, all the participating partners were also asked to write down all

the additional comments which might be relevant for this analysis.

Partners from Serbia stated that in the 1st and 2nd grades of high school education, while teaching the

subject Programming in the IT direction, classes and objects are mentioned as a concept of Object

Oriented Programming (OOP). Functions (methods) are also taught, but their essence is not included

because they are taught in detail from the subject of OOP in the 3rd grade. In all classes of other fields

(excluding IT) Python is taught as a programming language, but OOP related topics are not taught. OOP

is mentioned as a concept in programming.

Due to pedagogical standards in Croatia, which prescribe minimum number of students that are

necessary to be enrolled in subject (minimum of 10 students) and number of students which is

continuously decreasing at national level, it is very hard to gather a big enough group so the school is

allowed to conduct compulsory subject.

In Germany, Practical computer science - Advanced programming is one of four optional topics in the

curriculum. Teachers can decide to not implement OOP in their lessons. Partners also stated that basic

programming skills should be taught in grade 7-10, but often the teacher has to start at the beginning

and repeat all the basics from lower grades.

89

Regarding the subject called Applied Informatics – seminar in Slovakia, this subject is compulsory for

around 10 students. Preparation of students for informatics related universities is only marginal goal

of the school because its main focus is on economic related universities. From 10 students, there are

usually only 2 who want to study informatics at university. It is really hard to motivate or engage

students that do not want to continue in further study of informatics. Also, another problem is that

some students are not good in mathematics and solving some simple problems, such as prime

checking, is really hard for them. Regarding the subject Applied Informatics in 4th grade, this subject

is continuation of the same subject from 3rd grade. Most of the mentioned topics are considered only

marginally because students forget many things from the previous class during summer holiday and

during the school year, they have various activities related to the last class and school-leaving

examination ("maturita"). Actually, in the second half of the school year we primarily deal with

students that want to continue further study of informatics at universities.

2.7. Review of additional subjects related to programming in general

The subjects that were analyzed earlier are very much related to OOP, so they were the main focus for

analysis. Besides those subjects, there are several more subjects from IT field in every school that are

not related to OOP, but some of the topics that are taught in those subjects are prerequisite for

successful adoption of OOP contents. The brief description of contents of those subjects are shown in

Table 61.

Table 61 - Other IT subjects taught in partner institutions

School Subject name Grade Topics

High school

Ivanec

Informatics 1 -

obligatory

subject

1st grade programming languages, algorithm, pseudocode,

variables, data types, input/output operations,

relation, arithmetic and logic expressions, basic

algorithmic structures (sequence, selection, iteration),

analysis of the algorithm, correctness of the algorithm,

error correction, simple problem solving

(mathematical problems), implement solutions in

Python

Informatics 2 -

optional

subject

2nd grade one-dimensional data structures (string, array), nested

loops, data indexing, more complex problem solving,

implement solutions in Python

Informatics 3 -

optional

subject

3rd grade using concepts from Informatics 1 and Informatics 2 to

solve more complex problems, sorting algorithms,

search algorithms, recursion, user defined functions,

work with text files, using graphical modules to

visualize simple problems, implement solutions in

Python

Gymnasium

Dresden-

Plauen

OOP and

programming

related topics

weekly

offers

after

school

programming for beginners, programming for

advanced, 3D Printing, game programming with

90

time for

interested

students

Python, electronics and robotics (Arduino, LEGO

Mindstorms, etc.)

Computer

science –

compulsory

subject

7th - 10th

grade

basic knowledge about algorithm and programming

(basic algorithm structures), computer network,

databases, hardware, multimedia, etc.

Gymnasium

Pardubice

Informatics -

obligatory

subject

2nd grade algorithm, pseudocode, flow chart, Scratch, variables,

data types, input/output operations, relation,

arithmetic and logic expressions, basic algorithmic

structures (sequence, selection, iteration)

Obchodná

akadémia

Považská

Bystrica

Applied

Informatics –

Seminar –

obligatory

subject

1st and

2nd grade

flowcharts, basics of algorithmization explained using

real world examples (e.g., cooking recipe), introduction

to scripting in Python in IDLE environment

Web pages

development

– obligatory

subject

2nd grade create a simple website, but also to prepare images,

videos, text parts of the site by appropriate editing

Gimnazija

Ivanjica

Computer

application 1

1st grade information and communication technologies in

modern society, data organization and adaptation of

the working environment, creating and editing digital

documents, table calculation programs, application of

data processing

Computer

systems

1st grade introduction to computer systems, digital data record,

logical basics of data processing, fundamentals of

computer architecture and organization, assembly

programming

Programming

1

1st grade concept and examples of algorithms, basic concepts of

programming, languages and program development

environments, basic algorithms of linear and branched

structure, basic cyclic structure algorithms, detailed

overview of basic data types (variables, constants,

operators and expressions), arrangements, low and

basic algorithms for working with them,

multidimensional arrangement

Computer

application 2

2nd grade computer graphics, multimedia, presentations on the

internet

Operating

systems and

2nd grade introduction to operating systems, processes,

competitiveness and synchronization of processes,

91

computer

networks

stack, memory management, file system, control of

input-output devices, computer networks

Programming

2

2nd grade multidimensional arrays, matrices and basic algorithms

for working with them, user defined types, program

input and output, algorithm correctness analysis,

algorithm complexity analysis, elementary techniques

of construction of efficient algorithms, use of data

structures, basics of recursion, general techniques of

algorithm construction, projected task

Database 1 3rd grade database design, relative databases, question language

SQL

Programming

3

3rd grade graphs and algorithms for working with graphs, text

algorithms, geometric algorithms, number theory

algorithms, bit algorithms, overview of selected data

structures and AI

Computer

application 3

3rd grade application of computers in mathematics, application

of computers in various fields, computer graphics

Web

programming

4th grade computer networks, internet services and protocols,

description language html, style sheets - css language,

javascript language script for client programming,

server programming

Database 2 4th grade programming and databases data, other current

technologies

Programming

paradigms

4th grade expressive logic, predicate logic, logical programming,

functional programming

All the subjects mentioned in the Table 61 are related to IT and they are covering big variety of topics.

Some of the listed contents are important for starting to learn programming and are more or less

related to the contents of OOP.

As mentioned at the beginning of this analysis, there is a very big difference in number of subjects

among schools in which programming content in general is taught. For example, there are total of

twelve subjects in Gimnazija Ivanjica which are related to IT contents, while there is only one subject

in Gimnasium Pardubice. It is evident that Gimnazija Ivanjica is far more IT oriented school and their

students are no doubt better prepared for any university in which computer technology knowledge is

necessary.

92

Bibliography

1. SPU, „Innovative State Educational Program,“ 2014. [Online]. Available:

https://www.statpedu.sk/files/articles/dokumenty/inovovany-statny-vzdelavaci-

program/informatika_nsv_2014.pdf. [Cit. 05 12 2022].

2. Ľ. Šnajder a J. Guniš, „Prieskum kompetencií a postojov učiteľov informatiky v oblasti

programovania,“ 2022. [Online]. Available:

https://di.ics.upjs.sk/publikacie/prieskum_ucitelia_programovanie_2022.pdf. [Cit. 05 12

2022].

3. A. Fogašová, „Survey among university students,“ Informatika 2.0, Bratislava, 2022.

4. Y. Qian, and J. Lehman.: “Students’ Misconceptions and Other Difficulties in Introductory

Programming: A Literature Review”. ACM Transactions on Computing Education, Vol. 18,

No. 1, Article 1. Publication date: October 2017.

5. F. Batur, „How Does an Educational IDE Influence Students' Conceptions of Object-

Oriented Programming? Design of a Ph. D. Research Project to Explore Secondary School

Students' Conceptions of OOP,“ Proceedings of the 14th Workshop in Primary and

Secondary Computing Education, pp. 1-2, 2019.

6. Kölling, M, Brown, NCC & Altadmri, A 2017, 'Frame-Based Editing', Journal of Visual

Languages and Sentient Systems, vol. 3, pp. 40-67.

<http://www.ksiresearch.org/vlss/journal/VLSS2017/vlss-2017-kolling-brown-

altadmri.pdf>

7. Peter Hubwieser, „A smooth way towards object oriented programming in secondary

schools“, 2007.

8. T. Tóth a G. Lovászová, „Mediation of knowledge transfer in the transition from visual to

textual programming,“ Informatics in Education, zv. 20, %1. vyd.3, pp. 489-511, 2022.

9. H. Zhu a M. Zhou: „Methodology first and language second: A way to teach object-

oriented programming.,“ Companion of the 18th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pp. 140 - 147, 2003.

https://www.statpedu.sk/files/articles/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
https://www.statpedu.sk/files/articles/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
https://di.ics.upjs.sk/publikacie/prieskum_ucitelia_programovanie_2022.pdf

